《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (12): 46-53.doi: 10.6040/j.issn.1671-9352.0.2023.142
邵蕾,宫春梅*
SHAO Lei, GONG Chunmei*
摘要: 借助(*,~)-格林关系刻画r-宽大半群S上的几类好同余。给出r-宽大半群S上几类好同余,如最小(左;右)正则带类-好同余,最小(左;右)正则拟弱适当半群类-好同余等的刻画。
中图分类号:
[1] HOWIE J M. An introduction to semigroup theory[M]. London: Academic Press, 1967:116-117. [2] FOUNTAIN J B. Abundant semigroups[J]. Proceeding of the London Mathematical Society, 1982, 44(1):103-129. [3] LAWSON M V. Rees matrix semigroups[J]. Proceedings of the Edinburgh Mathematical Society, 1990, 33(1):23-37. [4] GUO Yuqi, SHUM K P, GONG Chunmei. On(*,~)-Greens relations and ortho-lc-monoids[J]. Communincation in Algebra, 2011, 39(1):5-31. [5] HALL T E. Congruences and Greens relations on regular semigroups[J]. Glasgow Mathematical Journal, 1972, 13(2):167-175. [6] 罗彦锋,赵华,郭小江. 幂等元满足置换恒等式的半群上的好同余[J]. 兰州大学学报(自然科学版), 2000, 36(3):25-31. LUO Yanfeng, ZHAO Hua, GUO Xiaojiang. Good congruences on abundant semigroups whose idempotents satisfy permutation identities[J]. Journal of Lanzhou University(Natural Science Edition), 2000, 36(3):25-13. [7] 郑娇. 几类弱适当半群的若干研究[D]. 西安:西安建筑科技大学, 2013. ZHENG Jiao. Some studies on several of weakly adequate semigroups[D]. Xian: Xian University of Architecture and Technology, 2013. [8] GUO Yuqi, GONG Chunmei, KONG Xiangjun.(*,~)-Good congruences on regular ortho-lc-mon-oids[J]. Algebra Colloquium: Academy of Mathematics and Systems Science, 2014, 21(2):235-248. [9] 宫春梅. G-广义完全正则半群的若干研究[D]. 重庆:西南大学, 2011. GONG Chunmei. Some stuties on G-generalized completely regular semigroups[D]. Chongqing: Southwest University, 2011. [10] GUO Xiaojiang, LIU Aiqin. Congruences on abundant semigroups associated with Greens *-relations[J]. Period Math Hung 2017, 75(3):14-28. [11] 冯丽霞. 超r-宽大半群的若干研究[D]. 西安:西安建筑科技大学, 2018. FENG Lixia. Some studies on super-r-wide semigroups[D]. Xian: Xian University of Architecture and Technology, 2018. [12] YAMADA M. Orthodox semigroups whose idempotents satisfy a certain identity[J]. Semigroup Forum, 1973, 6(1):113-128. [13] PETRICH M. Lectures in semigroups[M]. Berlin: Akademic Press, 1977: 379-383. |
[1] | 宫春梅,彭娇,白雪娜. 幂等元集为正规带的r-宽大半群上的好同余[J]. 《山东大学学报(理学版)》, 2024, 59(6): 6-12. |
[2] | 刘洋,宫春梅. 具有右正则中间幂等元的r-宽大半群[J]. 《山东大学学报(理学版)》, 2024, 59(10): 115-121. |
[3] | 崔倩,宫春梅,王惠. 半适当半群上Rees矩阵半群的(~)-好同余[J]. 《山东大学学报(理学版)》, 2022, 57(2): 61-66. |
[4] | 宫春梅,王惠,吴丹丹. 超富足半群上(*)-好同余研究[J]. 《山东大学学报(理学版)》, 2020, 55(8): 98-101. |
[5] | 宫春梅,张俊梅. 正则纯正幂么半群并半群上的(~)-好同余[J]. 《山东大学学报(理学版)》, 2020, 55(4): 6-12. |
[6] | 吴丹丹,宫春梅. 正规纯正幂幺半群并半群上的(~)-好同余[J]. 《山东大学学报(理学版)》, 2019, 54(4): 45-53. |
[7] | 宫春梅,冯丽霞,任学明. 完全J *,~-单半群上的(*,~)-好同余[J]. 山东大学学报(理学版), 2018, 53(6): 11-16. |
[8] | 孔祥军,王蓓. 关于可乘拟恰当断面的好同余[J]. 《山东大学学报(理学版)》, 2018, 53(12): 1-3. |
[9] | 李春华 . 型A半群上的fuzzy好同余[J]. J4, 2008, 43(2): 40-43 . |
|