《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (2): 71-79.doi: 10.6040/j.issn.1671-9352.0.2022.413
Yanan SU(),Chunling TONG*(),Yong LI,Senyuan SU
摘要:
广义Petersen图P(n, k)是着色问题中研究得最广泛的一类图, 但是当k(mod 4)=0时P(n, k)的全着色还有待进一步研究。采用计算机搜索和数学证明相结合的方法, 求得k(mod 16)=4, 8, 12以及k(mod 16)=0∧n(mod 2k)=0, 1, 2, 4时P(n, k)的等全色数。
中图分类号:
1 | 朱恩强. 图的全着色研究综述[J]. 广州大学学报(自然科学版), 2019, 18 (4):9-27. |
ZHU Enqiang. A survey on total coloring of graphs[J]. Journal of Guangzhou University(Natural Science Edition), 2019, 18 (4):9-27. | |
2 | BEHZAD M. Graphs and their chromatic numbers[D]. East Lansing: Michigan State University, 1965. |
3 | FU Hunglin. Some results on equalized total coloring[J]. Congressus Numerantium, 1994, 10, 111-119. |
4 |
SÁNCHEZ-ARROYO A. Determining the total colouring number is NP-hard[J]. Discrete Mathematics, 1989, 78 (3):315-319.
doi: 10.1016/0012-365X(89)90187-8 |
5 |
MCDIARMID C J H, SÁNCHEZ-ARROYO A. Total colouring regular bipartite graphs is NP-hard[J]. Discrete Mathematics, 1994, 124, 155-162.
doi: 10.1016/0012-365X(92)00058-Y |
6 |
WANG Weifan. Equitable total coloring of graphs with maximum degree 3[J]. Graphs and Combinatorics, 2002, 18 (3):677-685.
doi: 10.1007/s003730200051 |
7 |
DA SILVA A G, DANTAS S, SASAKI D. Equitable total coloring of complete r-partite p-balanced graphs[J]. Discrete Applied Mathematics, 2019, 261, 123-135.
doi: 10.1016/j.dam.2018.03.009 |
8 |
DA SILVA A G, DANTAS S, SASAKI D. Determining equitable total chromatic number for infinite classes of complete r-partite graphs[J]. Discrete Applied Mathematics, 2021, 296, 56-67.
doi: 10.1016/j.dam.2020.04.012 |
9 |
DA SILVA A G, DANTAS S, SASAKI D. Equitable total chromaic number of Kr×p for p even[J]. Electronic Notes in Theoretical Computer Science, 2019, 346, 685-697.
doi: 10.1016/j.entcs.2019.08.060 |
10 | GUI Hao, WANG Weifan, WANG Yiqiao, et al. Equitable total-coloring of subcubic graphs[J]. Discrete Applied Mathematics, 2015, 184 |
11 |
FURMAŹCZYK H, ZUAZUA R. Equitable total coloring of corona of cubic graphs[J]. Discussiones Mathematicae Graph Theory, 2021, 41 (4):1147-1163.
doi: 10.7151/dmgt.2245 |
12 |
杨腾飞, 徐常青 . 3-退化图的全染色[J]. 山东大学学报(理学版), 2022, 57 (6):61-63.
doi: 10.6040/j.issn.1671-9352.0.2020.556 |
YANG Tengfei, XU Changqing. Total colorings of 3-degenerate graphs[J]. Journal of Shandong University(Natural Science), 2022, 57 (6):61-63.
doi: 10.6040/j.issn.1671-9352.0.2020.556 |
|
13 |
TONG Chunling, LIN Xiaohui, YANG Yuansheng, et al. Equitable total coloring of Cm□Cn[J]. Discrete Applied Mathematics, 2009, 157, 596-601.
doi: 10.1016/j.dam.2008.08.030 |
14 | TONG Chunling, DONG Aijun, WANG Shouqiang, et al. Equitable total coloring of Kondel graph WΔ, n[J]. Journal of Computational Information Systems, 2014, 10 (22):9821-9829. |
15 |
GONCALVES I F A, DANTAS S, SASAKI D. On equitable total coloring of snarks[J]. Procedia Computer Science, 2021, 195, 334-342.
doi: 10.1016/j.procs.2021.11.041 |
16 |
王晓丽, 王慧娟, 刘彬 . 最大度为7的平面图全染色[J]. 山东大学学报(理学版), 2017, 52 (8):100-106.
doi: 10.6040/j.issn.1671-9352.0.2016.363 |
WANG Xiaoli, WANG Huijuan, LIU Bin. Total coloring of planar graphs with maximum degree seven[J]. Journal of Shandong University (Natural Science), 2017, 52 (8):100-106.
doi: 10.6040/j.issn.1671-9352.0.2016.363 |
|
17 |
谭香. 一类最大度为6的平面图的全染色[J]. 山东大学学报(理学版), 2021, 56 (11):71-75.
doi: 10.6040/j.issn.1671-9352.0.2020.358 |
TAN Xiang. Total colorings of one type of planar graphs with maximum degree 6[J]. Journal of Shandong University (Natural Science), 2021, 56 (11):71-75.
doi: 10.6040/j.issn.1671-9352.0.2020.358 |
|
18 | ZHANG Zhongfu, WANG Weifan, SHENG B, et al. On the equitable total colorings of some join graphs[J]. Journal of Information & Computational Science, 2005, 2 (4):829-834. |
19 |
GONG Kun, ZHANG Zhongfu, WANG Jianfang. Equitable total coloring of Fn∨Wn[J]. Acta Mathematicae Applicatae Sinica, English Series, 2009, 25, 83-86.
doi: 10.1007/s10255-006-6031-4 |
20 |
VIVIK J V, GIRIJA G. An algorithmic approach to equitable total chromatic number of graphs[J]. Proyecciones Journal of Mathematics, 2017, 36 (2):307-324.
doi: 10.4067/S0716-09172017000200307 |
21 |
PRAVEENA K, VENKATACHALAM M. On equitable chromatic number of Tadpole graph Tm, n[J]. Communications Faculty of Sciences University of Ankara: Series A1 Mathematics and Statistics, 2019, 68 (2):1638-1646.
doi: 10.31801/cfsuasmas.546904 |
22 |
JAYARAMAN G, MUTHURAMAKRISHNAN D, MANIKANDAN K. Equitable total chromatic number of splitting graph[J]. Proyecciones (Antofagasta), 2019, 38 (4):699-705.
doi: 10.22199/issn.0717-6279-2019-04-0045 |
23 |
DANTAS S, DE FIGUEIREDO C, MAZZUOCCOLO G, et al. On the total coloring of generalized Petersen graphs[J]. Discrete Mathematics, 2016, 339 (5):1471-1475.
doi: 10.1016/j.disc.2015.12.010 |
24 | TONG Chunling, LIN Xiaohui, YANG Yuansheng. Equitable total coloring of generalized petersen graphs P(n, k)[J]. Ars Combinatoria, 2019, 143, 321-336. |
25 |
WATKINS M E. A theorem on Tait colorings with an application to the generalized Petersen graphs[J]. Journal of Combinatorial Theory, 1969, 6 (2):152-164.
doi: 10.1016/S0021-9800(69)80116-X |
[1] | 田双亮 . 若干广义Petersen图的邻点可区别全染色[J]. J4, 2008, 43(9): 42-44 . |
[2] | 刘大琨 王淑栋. 若干广义Petersen图的关联色数[J]. J4, 2008, 43(12): 48-51. |
|