《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (6): 25-28, 35.doi: 10.6040/j.issn.1671-9352.0.2023.109
摘要:
设G=(V, E)为一个图, 如果染相同颜色α的边导出的子图是一个线性森林, 其中1≤α≤t, 则从E(G)到{1, 2, …, t}的一个映射φ称为t-线性染色。线性荫度la(G)表示图G的所有t-线性染色中最小的t。本文确定了最大度为Δ, 树宽最多为
中图分类号:
1 | AKIYAMA J , EXOO G , HARARY F . Covering and packing in graphs III: Cyclic and acyclic invari-ants[J]. Math Slovaca, 1980, 30 (4): 405- 417. |
2 |
AKIYAMA J , EXOO G , HARARY F . Covering and packing in graphs IV: Linear arboricity[J]. Networks, 1981, 11 (1): 69- 72.
doi: 10.1002/net.3230110108 |
3 |
ENOMOTO H , PEROCHE B . The linear arboricity of some regular graphs[J]. J Graph Theory, 1984, 8, 309- 324.
doi: 10.1002/jgt.3190080211 |
4 | GULDAN F . The linear arboricity of 10 regular graphs[J]. Math Slovaca, 1986, 36, 225- 228. |
5 |
WU Jianliang . On the linear arboricity of planar graphs[J]. J Graph Theory, 1999, 31, 129- 134.
doi: 10.1002/(SICI)1097-0118(199906)31:2<129::AID-JGT5>3.0.CO;2-A |
6 |
WU Jianliang , WU Yuwen . The linear arboricity of planar graphs of maximum degree seven are four[J]. J Graph Theory, 2008, 58, 210- 220.
doi: 10.1002/jgt.20305 |
7 |
WU Jianliang . The linear arboricity of series-parallel graphs[J]. Graphs Combin, 2000, 16 (3): 367- 372.
doi: 10.1007/s373-000-8299-9 |
8 | 吴建良. Halin图的一些路分解[J]. 山东矿业学院学报, 1998, 17 (1): 92- 96. |
WU Jianliang . Some path decompositions of Halin graphs[J]. Journal of Shandong Mining Institute, 1998, 17 (1): 92- 96. | |
9 | BODLAENDER H L . A partial k-arboretum of graphs with bounded treewidth[J]. Theor Comput Sci, 1998, 209 (12): 1- 45. |
10 | BODLAENDER H L. Planar graphs with bounded treewidth[D]. Utrecht: University of Utrecht, 1988. |
11 |
CHEN Hongyu , LAI Hongjian . On the linear arboricity of graphs with treewidth at most four[J]. Graphs and Combinatorics, 2023, 39, 1- 15.
doi: 10.1007/s00373-022-02594-9 |
12 | DIESTEL R . Graph Theory[M]. New York: Springer-Verlag, 2010. |
13 | LANG R. On the list chromatic index of graphs of tree-width 3 and maximum degree at least 7[EB/OL]. (2015-04-08) [2022-12-10]. http://arxiv.org/pdf/1504.02122. |
14 |
MEEKS K , SCOTT A . The parameterised complexity of the list problems on graphs of bounded treewidth[J]. Inform Comput, 2016, 251, 91- 103.
doi: 10.1016/j.ic.2016.08.001 |
15 |
BRUHN H , LANG R , STEIN M . List edge-coloring and total coloring in graphs of low treewidth[J]. J Graph Theory, 2016, 81 (3): 272- 282.
doi: 10.1002/jgt.21874 |
16 |
陈洪玲, 王慧娟, 高红伟. 可嵌入到欧拉示性数非负的曲面图的线性荫度[J]. 山东大学学报(理学版), 2018, 53 (12): 17- 22.
doi: 10.6040/j.issn.1671-9352.0.2017.539 |
CHEN Hongling , WANG Huijuan , GAO Hongwei . Linear arboricity of graphs embedded in a surface of non-negative Euler characteristic[J]. Journal of Shandong University (Natural Science), 2018, 53 (12): 17- 22.
doi: 10.6040/j.issn.1671-9352.0.2017.539 |
|
17 |
张江悦, 徐常青. 最大平均度不超过4的图的线性2-荫度[J]. 山东大学学报(理学版), 2018, 53 (6): 7- 10.
doi: 10.6040/j.issn.1671-9352.0.2017.286 |
ZHANG Jiangyue , XU Changqing . Linear 2-arboricity of graphs with maximum average degree at most 4[J]. Journal of Shandong University (Natural Science), 2018, 53 (6): 7- 10.
doi: 10.6040/j.issn.1671-9352.0.2017.286 |
|
18 | BRUHN H , GELLERT L , LANG R . Chromatic index, treewidth and maximum degree[J]. Electronic Journal of Combinatorics, 2018, 25 (2): 2- 23. |
19 |
HAN Miaomiao , LU You , LUO Rong , et al. Neighbor sum distinguishing total coloring of graphs with bounded treewidth[J]. J Comb Optim, 2018, 36, 23- 34.
doi: 10.1007/s10878-018-0271-0 |
[1] | 杜红军,王慧娟. 不含相邻短圈的可嵌入图的线性荫度[J]. 《山东大学学报(理学版)》, 2023, 58(11): 147-154. |
[2] | 徐常青1,安丽莎1,杜亚涛2. 平面图线性2-荫度的一个上界[J]. 山东大学学报(理学版), 2014, 49(04): 38-40. |
[3] | 王苒群,左连翠. 不含4-圈和5-圈的平面图的线性2-荫度[J]. J4, 2012, 47(6): 71-75. |
|