《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (7): 85-94.doi: 10.6040/j.issn.1671-9352.1.2023.064
Xingyu HUANG1,2(),Mingyu ZHAO1,3,Ziyu LYU1,2,*()
摘要:
针对图神经网络(graph neural network, GNN)模型缺乏相应的探针这一问题,提出面向图神经网络表征学习的知识探测框架,基于不同领域数据的类别属性设计2种类别感知的知识探针,分别为聚类探针和对比聚类探针。2种探针分别探测不同模型的表征效果并给出相应的分数。在引用网络、社交网络和生物网络等3个邻域的8个数据集上,对7个经典的图神经网络模型的表征学习实现了系统性地知识探测和评估实验,归纳出探测和评估结论。
中图分类号:
1 | GONG Liyu, CHENG Qiang. Exploiting edge features for graph neural networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 9203-9211. |
2 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2017-12-20)[2023-11-24]. http://arxiv.org/abs/1710.10903. |
3 | FAN Wenqi, MA Yao, LI Qing, et al. Graph neural networks for social recommendation[C]//The World Wide Web Conference. San Francisco: ACM, 2019: 417-426. |
4 | CHAUDHARY A, MITTAL H, ARORA A. Anomalydetection using graph neural networks[C]//2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). Faridabad: IEEE, 2019: 346-350. |
5 |
GUO Zhiwei , WANG Heng . A deep graph neural network-based mechanism for social recommendations[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (4): 2776- 2783.
doi: 10.1109/TII.2020.2986316 |
6 |
RATHI P C , LUDLOW R F , VERDONK M L . Practical high-quality electrostatic potential surfaces for drug discovery using a graph-convolutional deep neural network[J]. Journal of Medicinal Chemistry, 2020, 63 (16): 8778- 8790.
doi: 10.1021/acs.jmedchem.9b01129 |
7 | XIONG Zhaoping , WANG Dingyan , LIU Xiaohang , et al. Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism[J]. Journal of Medicinal Chemistry, 2019, 63 (16): 8749- 8760. |
8 |
YE Xianbin , GUAN Quanlong , LUO Weiqi , et al. Molecular substructure graph attention network for molecular property identification in drug discovery[J]. Pattern Recognition, 2022, 128, 108659.
doi: 10.1016/j.patcog.2022.108659 |
9 | PETRONI F, ROCKTÄSCHEL T, LEWIS P, et al. Language models as knowledge bases?[EB/OL]. (2019-09-03)[2023-11-24]. http://arxiv.org/abs/1909.01066. |
10 | DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: ACM, 2016: 3844-3852. |
11 | ZHU H, KONIUSZ P. Simple spectral graph convolution[C/OL]//International Conference on Learning Representations. Vienna, Austria, 2021: 1-15. https://openreview.net/pdf?id=CYO5T-YjWZV. |
12 | HE Xiangnan, DENG Kuan, WANG Xiang, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. [S. l. ]: ACM, 2020: 639-648. |
13 | HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. California: ACM, 2017: 1025-1035. |
14 | XU K, HU W H, LESKOVEC J, et al. How powerful are graph neural networks?[EB/OL]. (2018-12-26)[2023-11-24]. http://arxiv.org/abs/1810.00826. |
15 | BELINKOV Y, DURRANI N, DALVI F, et al. What do neural machine translation models learn about morphology?[EB/OL]. (2017-05-15)[2023-11-24]. http://arxiv.org/abs/1704.03471. |
16 | ADI Y, KERMANY E, BELINKOV Y, et al. Fine-grained analysis of sentence embeddings using auxiliary prediction tasks[EB/OL]. (2016-09-11)[203-11-24]. http://arxiv.org/abs/1608.04207. |
17 | CONNEAU A, KRUSZEWSKI G, LAMPLE G, et al. What you can cram into a single vector: probing sentence embeddings for linguistic properties[EB/OL]. (2018-05-03)[2023-11-24]. http://arxiv.org/abs/1805.01070. |
18 |
HUPKES D , VELDHOEN S , ZUIDEMA W . Visualisation and 'diagnostic classifiers' reveal how recurrent and recursive neural networks process hierarchical structure[J]. Journal of Artificial Intelligence Research, 2018, 61, 907- 926.
doi: 10.1613/jair.1.11196 |
19 | PIMENTEL T, VALVODA J, MAUDSLAY R H, et al. Information-theoretic probing for linguistic structure[EB/OL]. (2020-04-07)[2023-11-24]. http://arxiv.org/abs/2004.03061. |
20 | WU Zhiyong, CHEN Yun, KAO Ben, et al. Perturbed masking: parameter-free probing for analyzing and interpreting BERT[EB/OL]. (2020-04-30)[2021-11-24]. http://arxiv.org/abs/2004.14786. |
21 | HEWITT J, LIANG P. Designing and interpreting probes with control tasks[EB/OL]. (2019-09-08)[2023-11-24]. http://arxiv.org/abs/1909.03368. |
22 | HEWITT J, MANNING C D. A structural probe for finding syntax in word representations[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minnesota: ACL, 2019: 4129-4138. |
23 | YANG Z, COHEN W, SALAKHUDINOV R. Revisiting semi-supervised learning with graph embeddings[C]//International Conference on Machine Learning. New York: ACL, 2016: 40-48. |
24 | HARPER F M , KONSTAN J A . The MovieLens datasets: history and context[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5 (4): 1- 19. |
25 | KHOSLA P , TETERWAK P , WANG C , et al. Supervised contrastive learning[J]. Advances in Neural Information Processing Systems, 2020, 33, 18661- 18673. |
26 |
ZITNIK M , LESKOVEC J . Predicting multicellular function through multi-layer tissue networks[J]. Bioinformatics, 2017, 33 (14): i190- i198.
doi: 10.1093/bioinformatics/btx252 |
27 |
BORGWARDT K M , ONG C S , SCHÖNAUER S , et al. Protein function prediction via graph kernels[J]. Bioinformatics, 2005, 21 (Suppl 1): i47- i56.
doi: 10.1093/bioinformatics/bti1007 |
28 |
DEBNATH A K , LOPEZ DE COMPADRE R L , DEBNATH G , et al. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity[J]. Journal of Medicinal Chemistry, 1991, 34 (2): 786- 797.
doi: 10.1021/jm00106a046 |
[1] | 罗奇,苟刚. 基于聚类和群组归一化的多模态对话情绪识别[J]. 《山东大学学报(理学版)》, 2024, 59(7): 105-112. |
[2] | 王新生,朱小飞,李程鸿. 标签指导的多尺度图神经网络蛋白质作用关系预测方法[J]. 《山东大学学报(理学版)》, 2023, 58(12): 22-30. |
[3] | 张斌艳,朱小飞,肖朝晖,黄贤英,吴洁. 基于半监督图神经网络的短文本分类[J]. 《山东大学学报(理学版)》, 2021, 56(5): 57-65. |
|