您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (1): 101-110.doi: 10.6040/j.issn.1671-9352.4.2023.0181

• • 上一篇    

广义区间值q阶orthopair犹豫模糊软集及其多属性决策

吴维1,2,张贤勇1,2*,杨霁琳2,3   

  1. 1.四川师范大学数学科学学院, 四川 成都 610066;2.四川师范大学智能信息与量子信息研究所, 四川 成都 610066;3.四川师范大学计算机科学学院, 四川 成都 610101
  • 发布日期:2025-01-10
  • 通讯作者: 张贤勇(1978— ),男,教授,博士生导师,博士,研究方向为不确定分析与信息处理. E-mail: xianyongzh@sina.com
  • 作者简介:吴维(1997— ),女,硕士研究生,研究方向为模糊集与软集. E-mail:2394315654@qq.com*通信作者:张贤勇(1978— ),男,教授,博士生导师,博士,研究方向为不确定分析与信息处理. E-mail: xianyongzh@sina.com
  • 基金资助:
    四川省自然科学基金资助项目(2022NSFSC0929);四川省科技计划资助项目(2021YJ0085,2022ZYD0001)

Generalized interval-valued q-rung orthopair hesitant fuzzy soft sets and their multi-attribute decision making

WU Wei1,2, ZHANG Xianyong1,2*, YANG Jilin2,3   

  1. 1. School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, Sichuan, China;
    2. Institute of Intelligent Information and Quantum Information, Sichuan Normal University, Chengdu 610066, Sichuan, China;
    3. College of Computer Science, Sichuan Normal University, Chengdu 610101, Sichuan, China
  • Published:2025-01-10

摘要: 提出广义区间值q阶orthopair犹豫模糊软集,定义并、交、补、且、或运算并研究相关性质。针对广义区间值q阶orthopair犹豫模糊软集,提取关联区间值的平均隶属度和平均非隶属度,定义相关性和相关系数,得到扩张原则与基本性质。采用广义区间值q阶orthopair犹豫模糊软集的相关系数优化排序,从而实施多属性决策,采用医疗资源实例及能源项目投资案例验证新建决策方法的有效性。结果表明,相关的建模、度量及决策有利于不确定分析与应用。

关键词: q阶orthopair犹豫模糊集, 广义区间值模糊软集, 广义区间值q阶orthopair犹豫模糊软集, 相关系数, 多属性决策

Abstract: Generalized interval-valued q-rung orthopair hesitant fuzzy soft sets(GIVq-ROHFSSs)are proposed, and their operations of union, intersection, complement, and, or are defined to gain relevant properties. Regarding GIVq-ROHFSSs, average membership and non-membership degrees associated with interval values are extracted, and correlations and correlation coefficients are defined to acquire an extended principle and several basic properties. Correlation coefficients of GIVq-ROHFSSs are adopted, and optimal sorting is performed to motivate multi-attribute decision making. The practical example of medical resources and the energy project investment case show the effectiveness of new decision method. The related modeling, measurement and decision facilitate uncertainty analysis and applications.

Key words: q-rung orthopair hesitant fuzzy sets, generalized interval-valued fuzzy soft sets, generalized interval-valued q-rung orthopair hesitant fuzzy soft sets, correlation coefficient, multi-attribute decision making

中图分类号: 

  • O159
[1] MOLODTSOV D. Soft set theory-first results[J]. Computer and Mathematics with Applications, 1999, 37:19-31.
[2] LIU Y, QIN K, MARTINEZ L. Improving decision making approaches based on fuzzy soft sets and rough soft sets[J]. Applied Soft Computing, 2018, 65:320-332.
[3] FENG F, CHO J, PEDRYCZ W, et al. Soft set based association rule mining[J]. Knowldge-based Systems, 2016, 111:268-282.
[4] FATIMAH F, ROSADI D, HAKIM R F, et al. Probabilistic soft sets and dual probabilistic soft sets in decision-making[J]. Neural Computing and Applications, 2019, 31:397-407.
[5] 路怡瑶. 新型软粗糙集:软粗糙半群[D]. 无锡: 江南大学, 2019. LU Yiyao. New soft rough sets: soft rough semigroups[D]. Wuxi: Jiangnan University, 2019.
[6] BASKARAN N, ESWARI R. Efficient VM selection strategies in cloud datacenter using fuzzy soft set[J]. Journal of Organizational and End User Computing, 2021, 33(5):153-179.
[7] 文喜. 犹豫模糊软集的综合相关系数及其应用[J]. 南昌大学学报(理科版), 2018, 42(6):541-547. WEN Xi. Comprehensive correlation coefficient of hesitant fuzzy soft set and its application[J]. Journal of Nanchang University(Natural Science), 2018, 42(6):541-547.
[8] GARG H, ARORA R. Maclaurin symmetric mean aggregation operators based on t-norm operations for the dual hesitant fuzzy soft set[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11(6):375-410.
[9] 江立辉,陈华友,马成芸. 广义对偶犹豫模糊软集及其在决策中的应用[J]. 运筹与管理, 2022, 31(8):109-115. JIANG Lihui, CHEN Huayou, MA Chengyun. Generalized dual hesitant fuzzy soft set and its application in decision making[J]. Operations Research and Management Science, 2022, 31(8):109-115.
[10] ULLAH K, GARG H, MAHMOOD T, et al. Correlation cofficients for T-spherical fuzzy sets and their applications in clustering and multi-attribute decision making[J]. Soft Computing, 2020, 24(3):1647-1659.
[11] MAHMOOD T, ALI Z. Entropy measure and TOPSIS method based on correlation coefficient using complex q-rung orthopair fuzzy information and its application to multi-attribute decision making[J]. Soft Computing, 2021, 25(2):1249-1275.
[12] SHARMA S, SINGH S. On some generalized correlation coefficients of the fuzzy sets and fuzzy soft sets with application in cleanliness ranking of public health centres[J]. Journal of Intelligent & Fuzzy Systems, 2019, 36(4):3671-3683.
[13] 黄先玖,汤静. 犹豫模糊软集的相关系数及其在决策中的应用[J]. 控制与决策, 2019, 34(4):821-826. HUANG Xianjiu, TANG Jing. Correlation coefficient of hesitant fuzzy soft set and its application in decision making[J]. Control and Decision, 2019, 34(4):821-826.
[14] ARORA R, GARG H. A robust correlation coefficient measure of dual hesitant fuzzy soft sets and their application in decision making[J]. Engineering Application of Artificial Intelligence, 2018, 72:80-92.
[15] YIARAYONG P. On interval-valued fuzzy soft set theory applied to semigroups[J]. Soft Computing, 2020, 24(5):3113-3123.
[16] 赵海燕,马卫民,孙秉珍,等. 考虑风险偏好的区间直觉模糊软集型多属性决策方法[J]. 计算机应用研究, 2018, 35(2):453-458. ZHAO Haiyan, MA Weiming, SUN Bingzhen, et al. Multi-attribute decision making method based on interval intuitionistic fuzzy soft set considering risk preference[J]. Application Research of Computers, 2018, 35(2):453-458.
[17] ZULQARNAIN R M, XIN X L, SAQLAIN M, et al. TOPSIS method based on the correlation of interval-valued intuitionistic fuzzy soft sets and aggregation operators with their application in decision-making[J]. Journal of Mathematics, 2021, 2021:1-16.
[18] 江立辉,马成芸,陈华友. 一类新的广义模糊软集及其在多属性决策中的应用[J]. 淮阴师范学院学报(自然科学版), 2022, 21(2):107-114. JIANG Lihui, MA Chengyun, CHEN Huayou. A new kind of generalized fuzzy soft set and its application in multi-attribute decision making [J]. Journal of Huaiyin Teachers College(Natural Science Edition), 2022, 21(2):107-114.
[1] 周宇,周礼刚,林志超,徐鑫. 概率q阶犹豫模糊TODIM方法及其应用[J]. 《山东大学学报(理学版)》, 2023, 58(6): 9-17.
[2] 马慧,魏立力. 基于犹豫三角模糊相关系数的聚类分析[J]. 《山东大学学报(理学版)》, 2023, 58(12): 118-126.
[3] 苏晓艳,陈京荣,尹会玲. 广义区间值Pythagorean三角模糊集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2022, 57(8): 77-87.
[4] 张钰倩,张太雷. 具有复发效应的SEAIR模型及在新冠肺炎传染病中的应用[J]. 《山东大学学报(理学版)》, 2022, 57(1): 56-68.
[5] 黄林,袁修久,索中英,庞梦洋,包壮壮,李智伟. 区间值q阶犹豫模糊Frank集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2021, 56(3): 54-66.
[6] 高月月,李新颖,李宁. 电磁感应下Chay神经元的放电分岔特性与同步[J]. 《山东大学学报(理学版)》, 2021, 56(1): 43-51.
[7] 杜文胜,徐涛. 广义正交模糊混合平均算子及其在多属性决策中的应用[J]. 《山东大学学报(理学版)》, 2021, 56(1): 35-42.
[8] 董向忠, 关杰. SIMON类算法轮函数的线性性质[J]. 山东大学学报(理学版), 2015, 50(09): 49-54.
[9] 李述山. 基于尾部样本数据的尾部相关性分析[J]. 山东大学学报(理学版), 2014, 49(12): 49-54.
[10] 王中兴,唐芝兰,牛利利. 基于相对优势度的区间直觉模糊多属性决策方法[J]. J4, 2012, 47(9): 92-97.
[11] 王灵垠1,刘琚2. 降低OFDM系统峰均功率比的时频联合块交织方法[J]. J4, 2012, 47(11): 83-87.
[12] 章 玲,周德群 . λ模糊测度及其Mbius变换和关联系数间关系的推导[J]. J4, 2007, 42(7): 33-37 .
[13] 张方伟,曲淑英,王志强,姚炳学,曾现洋 . 偏差最小化方法及其在多属性决策中的应用[J]. J4, 2007, 42(3): 32-35 .
[14] 胡明礼,刘思峰 . 不完全信息下概率决策的扩展粗糙集方法[J]. J4, 2006, 41(6): 93-98 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!