您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (10): 65-71.doi: 10.6040/j.issn.1671-9352.0.2015.429

• • 上一篇    下一篇

一类满足G2连续的三角Bézier曲线曲面

刘华勇,谢新平,李璐,张大明,王焕宝   

  1. 安徽建筑大学数理学院, 安徽 合肥 230601
  • 收稿日期:2015-09-04 出版日期:2016-10-20 发布日期:2016-10-17
  • 作者简介:刘华勇(1972— ),男,硕士,副教授,研究方向为计算机辅助几何设计和图形学. E-mail:aiaiwj@126.com
  • 基金资助:
    国家自然科学基金资助项目(61402010);安徽省高等学校自然科学研究项目(KJ2015A328,KJ2015JD16,KJ2016A151)

A class of trigonometric Bézier curve and surface which satisfy G2 continuity

LIU Hua-yong, XIE Xin-ping, LI Lu, ZHANG Da-ming, WANG Huan-bao   

  1. School of Mathematic &
    Physics, Anhui Jianzhu University, Hefei 230601, Anhui, China
  • Received:2015-09-04 Online:2016-10-20 Published:2016-10-17

摘要: 为了在相对简单的条件下满足相对较高的光滑融合,同时在不改变控制顶点的情况下也可以修改曲线曲面的形状,构造了一组低阶的带有两个形状参数的三角Bézier基函数。基于该组基函数,通过三角函数的组合方式定义了任意阶三角Bézier曲线曲面,并详细讨论曲线的基本性质,同时也讨论了曲线、曲面的光滑融合所满足的条件。根据融合条件,可构造分段光滑的组合曲线曲面。这种融合的曲线曲面可以通过修改控制顶点和参数的方法来调节曲线曲面的形状,但不会改变曲线曲面的连续性并且在一定条件下能自动保证组合曲线、曲面的G2连续且计算简单。数值实例结果显示了该方法的有效性。

关键词: Bézier曲线曲面, 拼接, 三角函数, 连续性, 融合

Abstract: In order to meet the relatively high smooth jointing in relatively simple conditions, at the same time we can also modify the shape of curve and surface under without changing the control points, and then a group of low order trigonometric Bézier basis function with two shape parameters was constructed. Based on the group of basic functions, a class of curve and surface of arbitrary order trigonometric Bézier is defined by trigonometric function. The basic properties of the curves are discussed, and the conditions of the smooth blending of curves and surfaces are also discussed. According to the blending condition, the combination curves and surfaces of the piecewise smooth curves can be constructed. The blending curves and surfaces will not be changed the continuity of curve and surface by modifying the control points and parameters of the method and automatically meet with the G2 continuity and simple calculation. The results of numerical examples show the effectiveness of this method.

Key words: blending, trigonometric function, Bézier curves and surfaces, continuity, Jointing

中图分类号: 

  • TP391
[1] ZHANG Jiwen. C-curves: Two different forms of C-B-splines[J]. Computer Aided Geometric Design, 1997, 14(1):31-41.
[2] 王文涛,汪国昭.带形状参数的三角多项式均匀B样条[J]. 计算机学报,2005,28(7):1192-1198. WANG Wentao, WANG Guozhao. Trigonometric polynomial uniform B-spline with shape parameter[J]. Chinese Journal of Computers, 2005, 28(7):1192-1198.
[3] CAO Juan, WANG Guozhao. The structure of uniform B-spline curves with parameters[J]. Progress in Natural Science, 2008, 18(3):303-308.
[4] HAN Xuli, ZHU Yanpeng. Curve construction based on five trigonometric blending functions[J]. BIT Numerical Mathematics, 2012, 52(6):953-979.
[5] WANG Wentao, WANG Guohao. Bézier curves with shape parameter[J]. Journal of Zhejiang University Science A, 2005, 6(6):497-501.
[6] CHEN Qinyu, WANG Guozhao. A class of Bézier-like curve[J]. Computer Aided Geometric Design, 2003, 20(1):29-39.
[7] 严兰兰,韩旭里.具有多种优点的三角多项式曲线曲面[J].计算机辅助设计与图形学学报,2015, 27(10):1971-1979. YAN Lanlan, HAN Xuli.Trigonometric polynomial curve and surface with many advantages[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(10):1971-1979.
[8] 严兰兰, 韩旭里. 形状及光滑度可调的自动连续组合曲线曲面[J].计算机辅助设计与图形学学报,2014,26(10):1654-1662. YAN Lanlan, HAN Xuli. Automatic continuous composite curve and surface with adjustable shape and smoothness[J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(10):1654-1662.
[9] HAN Xian, HUANG Xili. A novel generalization of Bézier curve and surface[J].Journal of Computational and Applied Mathematics, 2008, 217(1):180-193.
[10] LV Yonggang, WANG Guozhao, YANG Xunnian. Uniform hyperbolic polynomial B-spline curves[J]. Computer Aided Geometric Design, 2002, 19(6):379-393.
[11] HU Gang, QIN Xinqiang. The construction of λμ-B-spline curves and its application to rotational surfaces[J]. Applied Mathematics and Computation, 2015, 266(3):194-211.
[12] LIU Xumin, XU Weixiang, GUAN Yong. Hyperbolic polynomial uniform B-spline curves and surfaces with shape parameter[J]. Graphical Models, 2010, 72(1):1-6.
[13] 李军成.一种构造任意类三次三角曲线的方法[J]. 小型微型计算机系统, 2011, 32(7):1442-1445. LI Juncheng. A method for constructing arbitrary quasi-cubic trigonometric curves[J].Journal of Chinese Computer Systems, 2011, 32(7):1442-1445.
[14] YAN Lanlan, TAO Huang. An algebraic-trigonometric blended piecewise curve[J]. Journal of Information & Computational Science, 2015, 12(17):6491-6501.
[15] MRIDULA Dube, REENU Sharm. Cubic TP B-spline curves with a shape parameter[J]. International.Journal of Engineering Research in Africa, 2014, 11(1):59-72.
[16] ZHU Yungpeng, HAN Xuli. New cubic rational basis with tension shape parameters[J]. Applied Mathematics Journal of chinese Universities, 2015, 30(3):273-298.
[1] 杜广伟. 具有次临界增长的椭圆障碍问题解的正则性[J]. 山东大学学报(理学版), 2018, 53(6): 57-63.
[2] 陈保会,张凌,史开泉. P-信息智能动态融合与信息规律状态智能识别[J]. 山东大学学报(理学版), 2018, 53(2): 83-87.
[3] 李润川,昝红英,申圣亚,毕银龙,张中军. 基于多特征融合的垃圾短信识别[J]. 山东大学学报(理学版), 2017, 52(7): 73-79.
[4] 张秀全,李小朝. P-信息融合与它的P-矩阵推理智能生成[J]. 山东大学学报(理学版), 2017, 52(4): 93-99.
[5] 宋元章,李洪雨,陈媛,王俊杰. 基于分形与自适应数据融合的P2P botnet检测方法[J]. 山东大学学报(理学版), 2017, 52(3): 74-81.
[6] 陈圣群,王应明,施海柳. 多时期匹配决策的等级置信度融合法[J]. 山东大学学报(理学版), 2016, 51(3): 60-69.
[7] 王路,赖春露. 一种基于两视点DIBR的改进虚拟视点合成方法[J]. 山东大学学报(理学版), 2016, 51(3): 122-131.
[8] 张景晓, 徐凤生. P-集合的属性函数与P-信息融合的属性合取特征及应用[J]. 山东大学学报(理学版), 2015, 50(10): 19-26.
[9] 黄春兰, 吴胜利. 数据融合在搜索结果多元化上的应用[J]. 山东大学学报(理学版), 2015, 50(01): 31-36.
[10] 汤积华,陈保会. 内逆P-信息智能融合与属性析取扩展关系[J]. 山东大学学报(理学版), 2014, 49(2): 89-92.
[11] 张凌1,汤积华1,史开泉2. 内P-信息融合与它的属性合取特征[J]. 山东大学学报(理学版), 2014, 49(2): 93-97.
[12] 刘烃, 赵宇辰, 刘杨, 孙亚楠. 基于报警数据融合的智能电网攻击检测方法[J]. 山东大学学报(理学版), 2014, 49(09): 35-40.
[13] 邱育锋,汤积华*. 属性内-融合与数据融合挖掘[J]. 山东大学学报(理学版), 2014, 49(06): 11-17.
[14] 史开泉. 信息规律智能融合与软信息图像智能生成[J]. 山东大学学报(理学版), 2014, 49(04): 1-17.
[15] 郭华龙,陈保会*,汤积华. 逆P-集合与信息智能融合挖掘-发现[J]. J4, 2013, 48(8): 97-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!