您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (4): 104-111.doi: 10.6040/j.issn.1671-9352.0.2015.152

• • 上一篇    下一篇

Schwarz Christoffel变换数值解法

崔建斌1,姬安召2,鲁洪江3,王玉风2,何姜毅2,许泰2   

  1. 1. 陇东学院数学与统计学院, 甘肃 庆阳 745000;2. 陇东学院能源工程学院, 甘肃 庆阳 745000;3. 成都理工大学能源工程学院, 四川 成都 610059
  • 收稿日期:2015-04-14 出版日期:2016-04-20 发布日期:2016-04-08
  • 作者简介:崔建斌(1972— ),男,硕士,副教授,研究方向为数据挖掘与灰色预测.E-mail:cuijb0658@163.com
  • 基金资助:
    庆阳市科技支撑计划项目(KG201307);陇东学院青年科技创新项目(XYGK1307)

Numerical solution of Schwarz Christoffel transform

CUI Jian-bin1, JI An-zhao2, LU Hong-jiang3, WANG Yu-feng2, HE Jiang-yi2, XU Tai2   

  1. 1. Mathematics and Statistics Institute, Longdong University, Qingyang 745000, Gansu, China;
    2. Energy Engineering Institute, Longdong University, Qingyang 745000, Gansu, China;
    3. Energy Engineering Institute, Chengdu University of Technology, Chengdu 610059, Sichuan, China
  • Received:2015-04-14 Online:2016-04-20 Published:2016-04-08

摘要: Schwarz Christoffel变换技术在某些工程问题处理中有着重要作用。本文研究Schwarz Christoffel变换方法及其所涉及的数值解法,采用Levenberg-Marquardt算法求解Schwarz Christoffel变换参数的非线性系统。为了提高数值计算精度,对于Schwarz Christoffel变换中出现的奇异积分问题,通过搜寻区间奇异点,细分积分区间,在子区间中采用高斯雅克比型积分,并对其权函数正交多项式零点和权值进行校正。最后给出算例验证了该方法的可行性。

关键词: 奇异积分, 非线性方程组, Schwarz Christoffel变换, 高斯雅克比型积分, Levenberg-Marquardt算法

Abstract: Schwarz Christoffel transformation technique has an important role to deal with engineering problem. Schwarz Christoffel transformation and its reference to numerical solution are studied.The nonlinear system of Schwarz Christoffel transform parameters is solved using Levenberg-Marquardt algorithm about. To increase the numerical accuracy, for the Singular Integral problem occurred during the course of Schwarz Christoffel transformation, search the interval singularity and sub-divide interval, which is to correct weight function and Zeros of Orthogonal Polynomials by Gauss-Jacobi quadrature in subdivide interval. Finally an example is given and the method feasible is verified.

Key words: Gauss-Jacobi quadrature, nonlinear equations, Schwarz Christoffel transform, singular integral, Levenberg-Marquardt algorithm

中图分类号: 

  • O241
[1] 王刚,许汉珍,顾王明,等. 数值许瓦尔兹——克力斯托夫变换与数值高斯——雅可比型积分[J].海军工程学院学报,1994, 1(2):25-34. WANG Gang, XU Hanzhen, GU Wangming, et al. Numerical schwarz-christoffel transformation and numerical Gauss-Jacobi quadrature[J].Journal of Naval Academy of Engineering, 1994, 1(2):25-34.
[2] 王刚,陆小刚,顾王明. 槽形内域中的数值许瓦尔兹——克力斯托夫保角变换[J].海军工程学院学报,1995,1(4):16-23. WANG Gang, LU Xiaogang, GU Wangming. Numerical schwarz-christoffel conformal mapping in channel region[J]. Journal of Naval Academy of Engineering, 1995, 1(4):16-23.
[3] 田雨波,钱鉴. 施瓦茨——克里斯托弗反变换的快速收敛算法及其应用[J].电波科学学报,2003,18(1):1-6. TIAN Yubo, QIAN Jian. Rapidly convergent algorithm for inverse schwarz-christoffel transformations and its application[J].Chinese Journal of Radio Science, 2003, 18(1):1-6.
[4] COSTAMAGNA E, FANNI. Analysis of rectangular coaxial structures by numerical inversion of the Schwarz-Christoffel transformation[J].IEEE Transactions on Magnetics, 1992, 28(2):1454-1457.
[5] CHUANG J M, GUI Q Y, HSIUNG C C. Numerical computation of schwarz-christoffel transformation for simply connected unbounded domain[J]. Computer Methods in Applied Mechanics and Engineering, 1993, 105(1):93-109.
[6] HU C. A software package for computing schwarz-christoffel conformal transformation for doubly connected polygonal regions[J]. ACM Transactions on Mathematical Software, 1998, 24(3):317-333.
[7] COSTAMAGNA E. Numerical inversion of the Schwarz-Christoffel conformal transformation: strip-line case studies[J]. Microwave and Optical Technology Letters, 2001, 28(3):179-183.
[8] DRISCOLL T A. A MATLAB toolbox for Schwarz-Christoffel mapping[J]. ACM Transactions on Mathematical Software, 1996, 22(2):168-186.
[9] COSTAMAGNA E. A new approach to standard Schwarz-Christoffel formula calculations[J]. Microwave and Optical Technology Letters, 2002, 32(3):196-199.
[10] DRISCOLL T A. Improvements to the Schwarz-Christoffel toolbox for MATLAB[J]. ACM Transactions on Mathematical Software, 2005, 31(2):239-251.
[11] HOUGH D M. Asymptotic Gauss-Jacobi quadrature error estimation for Schwarz-Christoffel integrals[J]. Journal of Approximation Theory, 2007, 146(2):157-173.
[12] TREFETHEN L N. Numerical computation of the Schwarz-Christoffel transformation[J].Society for Industrial and Applied Mathematics, 1980, 1(1):82-102.
[13] SUNDARARAJAN N, STEPHANE B, MAHAPATRA D R. Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping[J].International Journal for Numerical Methods in Engineering, 2009, 80(1):103-134.
[14] CROWDY Darren. The Schwarz-Christoffel mapping to bounded multiply connected polygonal domains[J]. Proceedings of The Royal Society, 2005, 146(2061):2653-2678.
[15] PATRIZI G. Numerical methods for unconstrained optimization and nonlinear equations[J]. European Journal of Operational Research, 1985, 20(1):119-120.
[16] 刘浩.大规模非线性方程组和无约束优化方法研究[D].上海:南京航空航天大学,2008. LIU Hao. Research on methods for large-scale nonlinear equations and unconstrained optimization[D]. Shanghai: Nanjing University of Aeronautics and Astronautics, 2008.
[1] 王洋. 求解一类非线性方程组的Newton-PLHSS方法[J]. J4, 2012, 47(12): 96-102.
[2] 陈 蓓 . 求解Toeplitz矩阵特征值反问题的不精确牛顿方法[J]. J4, 2008, 43(9): 89-93 .
[3] 杜红珊,石少广,张 蕾 . 弹性圆域中Ⅲ型分叉裂纹的应力强度因子[J]. J4, 2007, 42(9): 101-106 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!