您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (06): 27-32.doi: 10.6040/j.issn.1671-9352.0.2014.300

• 论文 • 上一篇    下一篇

行为ND随机变量阵列加权和的矩完全收敛性

谭闯, 郭明乐, 祝东进   

  1. 安徽师范大学数学系, 安徽 芜湖 241000
  • 收稿日期:2014-06-26 修回日期:2015-03-13 出版日期:2015-06-20 发布日期:2015-07-31
  • 通讯作者: 郭明乐(1978-),男,博士,副教授,研究方向为随机极限理论.E-mail:mleguo@163.com E-mail:mleguo@163.com
  • 作者简介:谭闯(1990-),男,硕士研究生,研究方向为随机极限理论.E-mail:tanchuangahnu@163.com
  • 基金资助:
    国家自然科学基金资助项目(11271020);安徽省教育厅重大项目(KJ2012ZD01);安徽省自然科学基金资助项目(1508085MA11)

Complete moment convergence of weighted sums of arrays of rowwise ND random variables

TAN Chuang, GUO Ming-le, ZHU Dong-jin   

  1. Department of Mathematics, Anhui Normal University, Wuhu 241000, Anhui, China
  • Received:2014-06-26 Revised:2015-03-13 Online:2015-06-20 Published:2015-07-31

摘要: 利用Hoffmann-type不等式及一系列矩不等式,通过必要的放缩,得出ND随机阵列权加和的矩完全收敛的充分条件。

关键词: ND随机阵列, 权加和, 矩完全收敛性, 矩不等式

Abstract: By making good use of Hoffmann-type inequality and a series of moments inequalities, and some necessary scalings, the sufficient condition of complete moment convergence of weighted sums of arrays of rowwise ND random variables was obtained.

Key words: rowwise ND random variables, weighted sums, complete moment convergence, moments inequalities

中图分类号: 

  • O211.4
[1] HSU P L, ROBBINS H. Complete convergence and the law of large numbers[J]. Proceedings of the National Academy of Sciences of the United States of America, 1947, 33(2):25-31.
[2] BAUM L E, KATE M. Convergence rates in the law of large numbers[J]. Transactions of the American Mathematical Society, 1965, 120(1):108-123.
[3] WU Qunying. A complete convergence theorem for weighted sums of arrays of rowwise negatively dependent random variables[J]. Journal of Inequalities and Applications, 2012, 2012(1):1-10.
[4] BAEK J I, CHOI I B, NIU S L. On the complete convergence of weighted sums for arrays of negatively associated variables[J]. Journal of the Korean Statistical Society, 2008, 37(1):73-80.
[5] JOAG-DEV K, PROSCHAN F. Negative association of random variables with applications[J]. The Annals of Statistics, 1983: 286-295.
[6] BOZOAGNIA A, PATTERSON R F, TAYLOR R L. Limit theorems for ND random variables[R]. Atlanta: University of Georfia,1993.
[7] WU Qunying. Probability limit theory for mixed sequence[M]. Beijing: China Science Press, 2006.
[8] SHEN A T. Probability inequalities for END sequence and their applications[J]. Journal of Inequalities and Applications, 2011, 2011(1):98.1-98.12.
[1] 江龙,陈敏. 基于加权g-期望的Jensen不等式,矩不等式与大数定律[J]. 山东大学学报(理学版), 2016, 51(8): 1-9.
[2] 张立君,郭明乐. 行为渐近负相协随机变量阵列加权和的矩完全收敛性[J]. 山东大学学报(理学版), 2016, 51(2): 42-49.
[3] 许日丽,郭明乐. 行为ND随机变量阵列加权和的矩完全收敛性[J]. J4, 2013, 48(6): 9-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!