山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (06): 27-32.doi: 10.6040/j.issn.1671-9352.0.2014.300
谭闯, 郭明乐, 祝东进
TAN Chuang, GUO Ming-le, ZHU Dong-jin
摘要: 利用Hoffmann-type不等式及一系列矩不等式,通过必要的放缩,得出ND随机阵列权加和的矩完全收敛的充分条件。
中图分类号:
[1] HSU P L, ROBBINS H. Complete convergence and the law of large numbers[J]. Proceedings of the National Academy of Sciences of the United States of America, 1947, 33(2):25-31. [2] BAUM L E, KATE M. Convergence rates in the law of large numbers[J]. Transactions of the American Mathematical Society, 1965, 120(1):108-123. [3] WU Qunying. A complete convergence theorem for weighted sums of arrays of rowwise negatively dependent random variables[J]. Journal of Inequalities and Applications, 2012, 2012(1):1-10. [4] BAEK J I, CHOI I B, NIU S L. On the complete convergence of weighted sums for arrays of negatively associated variables[J]. Journal of the Korean Statistical Society, 2008, 37(1):73-80. [5] JOAG-DEV K, PROSCHAN F. Negative association of random variables with applications[J]. The Annals of Statistics, 1983: 286-295. [6] BOZOAGNIA A, PATTERSON R F, TAYLOR R L. Limit theorems for ND random variables[R]. Atlanta: University of Georfia,1993. [7] WU Qunying. Probability limit theory for mixed sequence[M]. Beijing: China Science Press, 2006. [8] SHEN A T. Probability inequalities for END sequence and their applications[J]. Journal of Inequalities and Applications, 2011, 2011(1):98.1-98.12. |
[1] | 江龙,陈敏. 基于加权g-期望的Jensen不等式,矩不等式与大数定律[J]. 山东大学学报(理学版), 2016, 51(8): 1-9. |
[2] | 张立君,郭明乐. 行为渐近负相协随机变量阵列加权和的矩完全收敛性[J]. 山东大学学报(理学版), 2016, 51(2): 42-49. |
[3] | 许日丽,郭明乐. 行为ND随机变量阵列加权和的矩完全收敛性[J]. J4, 2013, 48(6): 9-13. |
|