山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (8): 1-9.doi: 10.6040/j.issn.1671-9352.0.2016.450
• • 下一篇
巩增泰,寇旭阳
GONG Zeng-tai, KOU Xu-yang
摘要: 研究了集值函数关于模糊测度Choquet积分的分析性质: 讨论了集值函数Choquet积分的计算方法, 给出了集值函数Choquet积分的表示定理和Radon-Nikodym性质, 并且对集值函数Choquet积分的原函数进行了刻划。最后, 对集值函数关于模糊测度Choquet积分定义进行了改进, 提出了集值函数 “上方函数” 和 “下方函数” 概念, 实现了对集值函数关于模糊测度的Choquet积分的控制。
中图分类号:
[1] CHOQUET G. Theory of capacities[J]. Annales de linstitut Fourier, 1955, 5:131-295. [2] MUROFUSHI T, SUGENO M. An integral of fuzzy measures and the Choquet integral as integral with respect to a fuzzy measure[J]. Fuzzy Sets and Systems, 1989, 29(2):201-227. [3] TORRA V, NARUKAWA Y. Numerical integration for the Choquet integral[J]. Information Fusion, 2016, 31(1):137-145. [4] NARUKAWA Y, TORRA V, SUGENO M. Choquet integral with respect to a symmetric fuzzy measure of a function on the real line[J]. Ann Oper Res, 2016, doi: 10.1007/s10479-012-1166-6. [5] GRABISCH M, MUROFUSHI T. Fuzzy measures and integrals[M] // Theory and Applications. Heidelberg: Physica-verlag, 2000. [6] JANG L C, KWON J S. On the represtentation of Choquet of set-valued functions and null set[J]. Fuzzy Sets and Systems, 2000, 112(2):233-239. [7] SUGENO M. A note on derivatives of functions with respect to fuzzy measures[J]. Fuzzy Sets and Systems, 2013, 222(1):1-17. [8] ZHANG Deli, WANG Zixiao. On set-valued fuzzy integrals[J]. Fuzzy Sets and Systems, 1993, 56(2):237-241. [9] JANG L C, KIL B M, KWON J S. Some properties of Choquet integrals of set-valued functions[J]. Fuzzy Sets and Systems, 1997, 91(1):95-98. [10] HUANG Yan, WU Congxin. Real-valued Choquet integral for set-valued mappings[J]. International Journal of Approximate Reasoning, 2014, 55(2):683-688. [11] LIAMAZARES B. Constructing Choquet integral-based operators that generalize weighted means and OWA operators[J]. Information Fusion, 2015, 23(1):131-138. [12] MENG Fanyong, ZHANG Qiang. Induced continuous Choquet integral operators and their application to group decision making[J]. Computers and Industrial Engineering, 2014, 68(1):42-53. [13] AUMANN R J. Integrals of set-valued functions[J]. Journal of Mathematical Analysis and Applications, 1965, 12(1):1-12. [14] 巩增泰, 魏朝琦. 集值函数关于非可加集值测度的Choquet积分[J]. 山东大学学报(理学版), 2015, 50(8):63-71. GONG Zengtai, WEI Zhaoqi. Choquet integral of set-valued functions with respect to multisubmeasures[J]. Journal of Shandong University(Natural Science), 2015, 50(8):63-71. [15] 吴从炘, 马明. 模糊分析学基础[M]. 北京: 国防工业出版社, 1991. WU Congxin, MA Ming. The foundament of fuzzy analysis[M]. Beijing: National Defense Industry Press, 1991. [16] LI Jun. Order continuity of monotone set function and convergence of measurable functions sequence[J]. Applied Mathematics and Computation, 2003, 135(2-3):211-218. [17] YAO Ouyang, LI Jun. Some properties of monotone set functions defined by Choquet integral[J]. Journal of Southeast University, 2003, 19(4):424-427. |
[1] | 巩增泰, 魏朝琦. 集值函数关于非可加集值测度的Choquet积分[J]. 山东大学学报(理学版), 2015, 50(08): 62-71. |
[2] | 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78-82. |
[3] | 张以欣,王贵君*,周立群. 集值模糊测度空间上的Egoroff定理[J]. J4, 2010, 45(5): 69-73. |
[4] | 巩增泰,谢婷. 模糊测度的广义可加性、转化定理和可加性估计[J]. J4, 2010, 45(10): 53-60. |
[5] | 李艳红. 模糊值函数序列的广义Egoroff定理[J]. J4, 2009, 44(4): 88-91 . |
[6] | 李艳红,王贵君 . 广义模糊值Choquet积分的强序连续与伪S性[J]. J4, 2008, 43(4): 76-80 . |
[7] | 章 玲,周德群 . λ模糊测度及其Mbius变换和关联系数间关系的推导[J]. J4, 2007, 42(7): 33-37 . |
|