山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (6): 70-75.doi: 10.6040/j.issn.1671-9352.0.2017.644
高瑞梅,初颖*
GAO Rui-mei, CHU Ying*
摘要: Weyl群的反射超平面形成的集合称为该群对应的Weyl构形。设符号An-1和Bn分别表示An-1型和Bn型Weyl构形。若构形A满足An-1⊂A⊂Bn, 则称A为An-1和Bn之间的构形。本文首先研究了阈图,给出构造阈图的一种方法。 然后,利用阈图研究了An-1和Bn之间的构形的自由性。给出结论:对于满足|An-1|
中图分类号:
[1] SAITO K. Theory of logarithmic differential forms and logarithmic vector fields[J]. Journal of the Faculty of Science, the University of Tokyo, Section IA, Mathematics, 1980, 27(2):265-291. [2] ABE T, BARAKAT M, CUNTZ M, et al. The freeness of ideal subarrangements of Weyl arrangements[J]. Journal of the European Mathematical Society, 2016, 18(6):1339-1348. [3] ABE T. Divisionally free arrangements of hyperplanes[J]. Inventiones Mathematicae, 2016, 204(1):317-346. [4] ABE T, TERAO H. Simple-root bases for Shi arrangements[J]. Journal of Algebra, 2015, 422(6):89-104. [5] 高瑞梅. G2型Shi-Catalan构形的自由性[J]. 山东大学学报(理学版), 2014, 49(12):66-70+94. GAO Ruimei. The freeness of Shi-Catalan arrangements of type G2[J]. Journal of Shandong University(Natural Science), 2014, 49(12):66-70+94. [6] GAO Ruimei, PEI Donghe, TERAO H. The Shi arrangement of the type Dl[J]. Proceedings of the Japan Academy, Mathematical Sciences(Series A), 2012, 88(3):41-45. [7] STANLEY R P. An introduction to hyperplane arrangements[J]. In Geometric Combinatorics, IAS/Park City Math Ser, American Mathematical Society, Providence, RI, 2007, 13:389-496. [8] EDELMAN P H, REINER V. Free hyperplane arrangements between An-1 and Bn[J]. Mathematische Zeitschrift, 1994, 215(1):347-365. [9] ORLIK P, TERAO H. Arrangements of hyperplanes[M] // Grundlehren der Mathematischen Wissenschaften. Berlin: Springer-Verlag, 1992: 1-325. [10] ZASLAVSKY T. Signed graph[J]. Discrete Applied Mathematics, 1982, 4(1):47-74. [11] CHVÁTAL V, HAMMER P L. Aggregation of inequalities in integer programming[J]. Annals of Discrete Mathematics, 1977, 32(1):145-162. [12] JIANG Guangfeng, YU Jianming. Supersolvability of complementary signed-graphic hyperplane arrangements[J]. Australasian Journal of Combinatorics, 2004, 30:261-276. [13] GOLUMBIC M C. Trivially perfect graphs[J]. Discrete Mathematics, 1978, 24(1):105-107. |
[1] | 高瑞梅,李喆. 简单相连多边形对应的图构形的特征多项式[J]. 山东大学学报(理学版), 2016, 51(10): 72-77. |
[2] | 高瑞梅. G2型Shi-Catalan构形的自由性[J]. 山东大学学报(理学版), 2014, 49(12): 66-70. |
|