您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (10): 20-23.doi: 10.6040/j.issn.1671-9352.0.2019.763

• • 上一篇    下一篇

Tarski代数和模态代数的主同余

曹发生   

  1. 贵州民族大学认知科学与技术系, 贵州 贵阳 550025
  • 出版日期:2020-10-20 发布日期:2020-10-07
  • 作者简介:曹发生(1977— ),男,博士,副教授,研究方向为代数学. E-mail:caofasheng@163.com
  • 基金资助:
    国家社会科学基金资助项目(20XZX017)

Principal congruence on Tarski algebra and modal algebra

CAO Fa-sheng   

  1. Department of Cognitive Science, Guizhou Minzu University, Guiyang 550025, Guizhou, China
  • Online:2020-10-20 Published:2020-10-07

摘要: 研究了Tarski代数和模态代数的主同余。结合布尔代数的主同余的结果,给出Tarski代数和模态代数的主同余的刻画。

关键词: 主同余, 主同余公式, Tarski代数, 模态代数

Abstract: The principal congruences of Tarski algebras and modal algebras are studied. Combined with the result of principal congruence of Boolean algebra, the characterization of principal congruence of Tarski algebra and modal algebra is given.

Key words: principal congruence, principal congruence formula, Tarski algebra, modal algebra

中图分类号: 

  • O153.5
[1] BLYTH T, VARLET J. Principal congruences on some lattice-ordered algebras[J]. Discrete Mathematics, 1990, 81(3):323-329.
[2] BURRIS S, SANKAPPANAVAR H P. A course in universal algebra[M]. New York: Springer-Verlag, 1981.
[3] CELANI S A. Modal Tarski algebras[J]. Reports on Mathematical Logic, 2005, 39(39):113-126.
[4] FANG Jie, SUN Zhongju. Principal congruences on S1-algebras[J]. Algebra Colloq, 2013, 20(3):427-434.
[5] GRÄTZER G. Universal algebra[M]. New York: Springer-Verlag, 1979.
[6] JANSANA R, MARTÍN H J S. On principal congruences in distributive lattices with a commutative monoidal operation and an implication[J]. Studia Logica, 2018(3):1-24.
[7] LAKSER H. Principal congruences of pseudocomplemented distributive lattices[J]. Proceedings of the American Mathematical Society, 1973, 37(1):32-36.
[8] LUO C. A special kind of principal congruences on MS-algebras[J]. Acta Mathematica Scientia, 2008, 28(2):315-320.
[9] SAN MARTÍN Hernán Javier. Principal congruences in weak Heyting algebras[J]. Algebra Universalis, 2016, 75:405-418.
[10] SAN MARTÍN Hernán Javier. On congruences in weak implicative semi-lattices[J]. Soft Computing, 2016, 21(12):1-10.
[11] PALMA C, SANTOS R. Principal congruences on semi-de morgan algebras[J]. Studia Logica, 2001, 67(1):75-88.
[12] SANKAPPANAVAR H P. Principal congruences on psdudo-complemented on Morgan algebras[J]. Proc Amer Math Soc, 1987(33):3-11.
[13] SANKAPPANAVAR H P, VAZ DE CARVALHO J. Congruence properties of pseudocomplemented de Morgan algebras[J]. Mathematical Logic Quarterly, 2014, 60(6):425-436.
[14] SANKAPPANAVA H P. Principal congruences of double demi-p-lattices[J]. Algebra Universalis, 1990, 27(2):248-253.
[15] 曹发生,王驹,蒋运承.格L的元与它的主同余的关系[J].西南大学学报(自然科学版), 2009,31(12):87-91. CAO Fasheng, WANG Ju, JIANG Yuncheng. The relationship of element of lattice L and principal congruence on it[J]. Journal Southwest University(Nature Science Edition), 2009, 31(12):87-91.
[16] 曹发生,王驹,蒋运承.有单位元的环的主同余[J].江西师范大学学报(自然科学版), 2010, 34(2):192-194. CAO Fasheng, WANG Ju, JIANG Yuncheng. Principal Congruence on ring with identity[J]. Journal of Jiangxi Normal University(Nature Science Edition), 2010, 34(2):192-194.
[17] 曹发生. 布尔格的主同余[J].四川师范大学学报(自然科学版), 2012,35(2):236-239. CAO Fasheng. Principal congruence on Boolean lattices[J]. Journal of Sichuan Normal University(Nature Science Edition), 2012, 35(2):236-239.
[18] 曹发生. Hamilton群的主同余[J].数学的实践与认识, 2013, 43(15):255-258. CAO Fasheng. Principal congruence on Hamilton groups[J]. Mathematics in Practice and Theory, 2013, 43(15):255-258.
[19] 曹发生,肖方. 模态代数的主同余[J].山东大学学报(理学版), 2020,55(2):104-108. CAO Fasheng, XIAO Fang. Principal congruences on modal algebras[J]. Journal of Shandong University(Nature Science), 2020, 55(2):104-108.
[20] 叶林, 曹发生. 格的标准元和分配元的主同余[J].山东大学学报(理学版), 2010,45(11):63-67. YE Lin, CAO Fasheng. Principal congruence on the standard and distributive elements of lattice[J]. Journal of Shandong University(Nature Science), 2010, 45(11):63-67.
[1] 曹发生,肖方. 模态代数的主同余[J]. 《山东大学学报(理学版)》, 2020, 55(2): 104-108.
[2] 叶林1,曹发生2. 格的标准元和分配元的主同余[J]. J4, 2010, 45(11): 63-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡明娣1,2,折延宏1,王敏3. L3*系统中逻辑度量空间的拓扑性质[J]. J4, 2010, 45(6): 86 -90 .
[2] 吴大千,杜 宁,王 炜,翟 雯,王玉芳,王仁卿,张治国* . 昆嵛山森林群落下灌草层结构与多样性研究[J]. J4, 2007, 42(1): 83 -88 .
[3] 杨俊仙,徐丽*. 一类具非线性发生率和时滞的SIQS传染病模型的全局稳定性[J]. 山东大学学报(理学版), 2014, 49(05): 67 -74 .
[4] 陈祥平,李仁贵. 超线性奇异脉冲微分方程的正解[J]. J4, 2009, 44(3): 45 -49 .
[5] 曹 瑛,王明文,陶红亮 . 基于Markov网络的检索模型[J]. J4, 2006, 41(3): 126 -130 .
[6] 李 新 . 基于不确定性推理与Fuzzy评判模型的智能选药系统[J]. J4, 2008, 43(11): 36 -39 .
[7] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[8] 杨维强,彭实戈 . 期权稳健定价模型及实证[J]. J4, 2006, 41(2): 69 -73 .
[9] 付永红1 ,余眝妙2 ,唐应辉3 ,李才良4 . 两水平修理策略下的M/(Mr,Gs)/1/N/N机器维修模型稳态概率算法与性能分析[J]. J4, 2009, 44(4): 72 -78 .
[10] 谭香1,2,陈宏宇1,徐兰3. 最大度为6且不含相交4-圈的三类平面图的全染色[J]. J4, 2010, 45(4): 31 -35 .