您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (2): 104-108.doi: 10.6040/j.issn.1671-9352.0.2019.068

• • 上一篇    

模态代数的主同余

曹发生,肖方   

  1. 贵州民族大学认知科学系, 贵州 贵阳 550025
  • 发布日期:2020-02-14
  • 作者简介:曹发生(1977— ),男,博士,副教授,研究方向为代数. E-mail:caofas@21cn.com
  • 基金资助:
    国家自然科学基金资助项目(11661046)

Principal congruences on modal algebras

CAO Fa-sheng, XIAO Fang   

  1. Department of Cognitive Science, Guizhou Minzu University, Guiyang 550025, Guizhou, China
  • Published:2020-02-14

摘要: 研究了布尔代数和模态代数的主同余,严格按照布尔代数和模态代数的主同余的定义,给出了布尔代数和模态代数的主同余刻画。

关键词: 主同余, 主同余公式, 布尔代数, 模态代数

Abstract: The principal congruences of Boolean algebras and modal algebras are studied. In strict accordance with the definitions of principal congruences of Boolean algebras and modal algebras, the characterization of principal congruences of Boolean algebras and modal algebras are given.

Key words: principal congruence, principal congruence formula, Boolean algebra, modal algebra

中图分类号: 

  • O153.5
[1] BURRIS S, SANKAPPANAVAR H P. A course in universal algebra[M]. New York: Springer Verlag, 1981.
[2] GRATZER George. Universal algebra[M]. New York: Springer Verlag, 1979.
[3] BLYTH T, VARLET J. Principal congruences on some lattice-ordered algebras[J]. Discrete Mathematics, 1990, 81(3):323-329.
[4] CELANI S A. Modal Tarski algebras[J]. Reports on Mathematical Logic, 2005, 39:113-126.
[5] FANG Jie, SUN Zhongju. Principal congruences on S1-algebras[J]. Algebra Colloq, 2013, 20(3):427-434.
[6] JANSANA R, SAN MARTÍN H J. On principal congruences in distributive lattices with a commutative monoidal operation and an implication[J]. Studia Logica, 2019, 107(2):351-374.
[7] LAKSTER H. Principal congruences of pseudocomplemented distributive lattices[J]. Proceedings of the American Mathematical Society, 1973, 37(1):32-36.
[8] PALMA C, SANTOS R. Principal congruences on semi-de Morgan algebras[J]. Studia Logica, 2001, 67(1):75-88.
[9] SAN MARTÍN H J. Principal congruences in weak Heyting algebras[J]. Algebra Universalis, 2016, 75(4):405-418.
[10] SAN MARTÍN H J. On congruences in weak implicative semi-lattices[J]. Soft Computing, 2017, 21(12):3167-3176.
[11] SANKAPPANAVR H P. Principal congruences on psdudocomplemented on Morgan algebras[J]. Proc Amer Math Soc, 1987(33):3-11.
[12] SANKAPPANAVR, H P, DE CARVALHO Júlia Vaz. Congruence properties of pseudocomplemented de Morgan algebras[J]. Mathematical Logic Quarterly, 2014, 60(6):425-436.
[13] SANKAPPANAVR, H P. Principal congruences of double demi-p-lattices[J]. Algebra Universalis, 1990, 27(2):248-253.
[14] LUO C W. A special kind of principal congruences on MS-algebras[J]. Acta Mathematica Scientia, 2008, 28(2):315-320.
[15] 宋振明, 徐杨. 格蕴涵代数上的同余关系[J]. 应用数学, 1997, 10(3):121-124. SONG Zhenming, XU Yang. Congruence relations on lattice implication algebras[J]. Mathematica Applicata, 1997, 10(3):121-124.
[16] 曹发生, 王驹, 蒋运承. 格L的元与主同余的关系[J]. 西南大学学报(自然科学版), 2009, 31(12):87-91. CAO Fasheng, WANG Ju, JIANG Yuncheng. The relationship of element of lattice L and principal congruence on it[J]. Journal of Southwest University(Natural Science Edition), 2009, 31(12):87-91.
[17] 曹发生, 王驹, 蒋运承. 有单位元的环的主同余[J]. 江西师范大学学报(自然科学版), 2010, 34(2):192-194, 214. CAO Fasheng. Principal congruence on ring with identity[J]. Journal of Jiangxi Normal University(Natural Sciences Edition), 2010, 34(2):192-194, 214.
[18] 曹发生. 布尔格的主同余[J].四川师范大学学报(自然科学版),2012,35(2):236-239. CAO Fasheng. Principal congruence on boolean lattices[J]. Journal of Sichuan Normal University(Natural Science Edition), 2012, 35(2):236-239.
[19] 曹发生. Hamilton群的主同余[J].数学的实践与认识, 2013, 43(15):255-258. CAO Fasheng. Principal congruence on Hamilton groups[J]. Mathematics in Practice and Theory, 2013, 43(15):255-258.
[20] 叶林, 曹发生. 格的标准元和分配元的主同余[J]. 山东大学学报(理学版), 2010, 45(11):63-66, 72. YE Lin, CAO Fasheng. Principal congruence on the standard and distributive elements of a lattice[J]. Journal of Shandong University, 2010, 45(11):63-66, 72.
[1] 刘莉君. 布尔代数上triple-δ-导子的特征及性质[J]. 山东大学学报(理学版), 2017, 52(11): 95-99.
[2] 刘卫锋. 布尔代数的软商布尔代数[J]. 山东大学学报(理学版), 2015, 50(08): 57-61.
[3] 刘卫锋,杜迎雪,许宏伟. 区间软布尔代数[J]. 山东大学学报(理学版), 2014, 49(2): 104-110.
[4] 冯敏1,辛小龙1*,李毅君1,2. MV-代数上的f导子和g导子[J]. 山东大学学报(理学版), 2014, 49(06): 50-56.
[5] 刘卫锋. 软布尔代数[J]. J4, 2013, 48(8): 56-62.
[6] 刘春辉1,2. 布尔代数的区间值(∈,∈∨ q)模糊子代数[J]. J4, 2013, 48(10): 94-98.
[7] 叶林1,曹发生2. 格的标准元和分配元的主同余[J]. J4, 2010, 45(11): 63-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!