您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (08): 57-61.doi: 10.6040/j.issn.1671-9352.0.2014.394

• 论文 • 上一篇    下一篇

布尔代数的软商布尔代数

刘卫锋   

  1. 郑州航空工业管理学院数理系, 河南 郑州 450015
  • 收稿日期:2014-09-06 出版日期:2015-08-20 发布日期:2015-07-31
  • 作者简介:刘卫锋(1976- ),男,硕士,副教授,研究方向为数学建模、模糊数学. E-mail:lwf0519@163.com
  • 基金资助:
    航空科学基金项目(2013ZD55006); 郑州航空工业管理学院青年科研基金(2014113001)

Soft quotient Boolean algebra of Boolean algebra

LIU Wei-feng   

  1. Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015, Henan, China
  • Received:2014-09-06 Online:2015-08-20 Published:2015-07-31

摘要: 定义了布尔代数的软合同关系、软商代数和软商布尔代数等概念,证明了布尔代数的软合同关系与软理想相互确定,进而由布尔代数的软真理想得到布尔代数的软商布尔代数.最后,证明了布尔代数的软同态具有保软合同性.

关键词: 布尔代数, 软布尔代数, 软理想, 软商布尔代数

Abstract: The concepts of soft congruence relation, soft quotient algebra and soft quotient Boolean algebra of Boolean algebra are defined, and it is proved that soft congruence relation and soft ideal of Boolean algebra can be determined by each other. Then soft quotient Boolean algebra of Boolean algebra is obtained from soft proper ideal of Boolean algebra. Finally, the nature of preserving soft congruence relation of soft homomorphism of Boolean algebras is proved.

Key words: Boolean algebra, soft Boolean algebra, soft ideal, soft quotient Boolean algebra

中图分类号: 

  • O174
[1] MOLODTSOV D. Soft set theory—first results[J]. Computers and Mathematics with Applications, 1999, 37:19-31.
[2] MAJI P K, BISWAS R, ROY A R. Soft set theory[J]. Computers and Mathematics with Applications, 2003, 45:555-562.
[3] ALI M I, FENG Feng, LIU Xiaoyan, et al. On some new operations in soft set theory[J]. Computers and Mathematics with Applications, 2009, 57:1547-1553.
[4] QIN Keyun, HONG Zhiyong. On soft equality[J]. Journal of Computational and Applied Mathematics, 2010, 234:1347-1355.
[5] AKTAS H, CAGMAN N. Soft sets and soft groups[J]. Information Sciences, 2007, 177:2726-2735.
[6] SEZGIN A, ATAGUN A O. Soft groups and normalistic soft groups[J]. Computers and Mathematics with Applications, 2011, 62(2):685-698.
[7] ACAR H, KOYUNCU F, TANAY B. Soft sets and soft rings[J]. Computers and Mathematics with Applications, 2010, 59:3458-3463.
[8] FENG Feng, JUN Y B, ZHAO Xianzhong. Soft semirings[J]. Computers and Mathematics with Applications, 2008, 56:2621-2628.
[9] 廖祖华,芮明力.软坡[J].计算机工程与应用,2012,48(2):30-32. LIAO Zuhua, RUI Mingli. Soft inclines[J]. Computers Engineering and Applications, 2012, 48(2):30-32.
[10] NAGARAJAN E K R, MEENAMBIGAI G, KRAGUJEVAC J. An application of soft sets to lattices[J]. Kragujevac Journal of Mathematics, 2011, 35(1):75-87.
[11] LANG Guangming, LI Qingguo. One research of soft lattices[M]// WANG Guojun, ZHAO Bin, LI Yongming. Quantitative Logic and Soft Computing. Singapore: World Scientific publishing Co. Pte. Ltd., 2012: 544-551.
[12] JUN Y B. Soft BCK/BCI algebras[J]. Computers and Mathematics with Applications, 2008, 56:1408-1413.
[13] 刘卫锋. 软布尔代数[J].山东大学学报:理学版,2013,48(8):56-62. LIU Weifeng. Soft Boolean algebra[J]. Journal of Shandong University: Natural Science, 2013, 48(8):56-62.
[14] ALI M I. A note on soft sets, rough sets and fuzzy soft sets[J]. Applied Soft Computing, 2011, 11(4):3329-3332.
[15] 李文婷,辛小龙. 群上的软同余关系[J].模糊系统与数学,2014,28(2):76-81. LI Wenting, XIN Xiaolong. Soft congruence relations on groups[J]. Fuzzy Systems and Mathematics, 2014, 28(2):76-81.
[16] 吕家俊,朱月秋,孙耕田.布尔代数[M].济南:山东教育出版社,1982. LV Jiajun, ZHU Qiuyue, SUN Gengtian. Boolean algebra[M]. Jinan: Shandong Education Press, 1982.
[1] 刘莉君. 布尔代数上triple-δ-导子的特征及性质[J]. 山东大学学报(理学版), 2017, 52(11): 95-99.
[2] 刘卫锋,杜迎雪,许宏伟. 区间软布尔代数[J]. 山东大学学报(理学版), 2014, 49(2): 104-110.
[3] 冯敏1,辛小龙1*,李毅君1,2. MV-代数上的f导子和g导子[J]. 山东大学学报(理学版), 2014, 49(06): 50-56.
[4] 刘卫锋. 软布尔代数[J]. J4, 2013, 48(8): 56-62.
[5] 刘春辉1,2. 布尔代数的区间值(∈,∈∨ q)模糊子代数[J]. J4, 2013, 48(10): 94-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!