《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (5): 85-91.doi: 10.6040/j.issn.1671-9352.1.2020.032
• • 上一篇
易洁,钟茂生*,刘根,王明文
YI Jie, ZHONG Mao-sheng*, LIU Gen, WANG Ming-wen
摘要: 使用一种基于密度的分布式嵌入式表示,并给出一种学习高斯分布空间表示的方法,以更好地捕获关于表示及其关系的不确定性,比点积余弦相似度更自然地表达词语的不对称性;同时,针对中文汉字本身特点,将组成汉字的组件即子汉字的语义信息加入词表示训练。与现有方法对比,该文的模型性能在词语相似度或下游任务等方面有更好的效果,且能更好地表达词语的不确定性。
中图分类号:
[1] ZHANG Yue, YANG Jie. Chinese NER using lattice LSTM[C] //Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne: ACL, 2018: 1554-1564. [2] XIAO Huiru, LIU Xin, SONG Yangqiu. Efficient path prediction for semi-supervised and weakly supervised hier-archical text classification[C] //Proceedings of the 2019 World Wide Web Conference.San Francisco: WWW, 2019: 3370-3376. [3] LI Xin, BING Lidong, LI Piji, et al. A unified model for opinion target extraction and target sentiment prediction[EB/OL]. arXiv, 2018. arXiv: 1811.05082. [4] KRISHNA K, IYYER M. Generating question-answer hierarchies[EB/OL]. arXiv, 2019. arXiv:1906.02622. [5] MIKOLOV T, CHEN K, CORRADO G S, et al. Efficient estimation of word representations in vector space[EB/OL]. arXiv, 2013. arXiv:1301.3781. [6] MIKOLOV T, CHEN K, CORRADO G S, et al. Distributed representations of words and phrases and their compositionality[C] //Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 2. New York: ACM, 2013: 3111-3119. [7] VILNIS L, MCCALLUM A. Word representations via gaussian embedding[EB/OL]. arXiv, 2014. arXiv:1412.6623. [8] ATHIWARATKUN B, WILSON A G. Multimodal word distributions[EB/OL]. arXiv, 2017. arXiv:1704.08424. [9] PENNINGTON J, SOCHER R, MANNING C. Glove: global vectors for word representation[C] //Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). Doha: ACL, 2014: 1532-1543. [10] SUN Yaming, LIN Lei, YANG Nan, et al. Radical-enhanced chinese character embedding[C] //Proceedings of the International Conference on Neural Information Processing. Cham: Springer, 2014: 279-286. [11] LI Yanran, LI Wenjie, SUN Fei, et al. Component-enhanced chinese character embeddings[EB/OL]. arXiv, 2015. arXiv:1508.06669. [12] COLLOBERT R, WESTON J. A unified architecture for natural language processing: deep neural networks with multitask learning[C] //Proceedings of the 25th International Conference on Machine Learning. Helsinki: ICML, 2008: 160-167. [13] CHEN Xinxiong, XU Lei, LIU Zhiyuan, et al. Joint learning of character and word embeddings[C] //Proceedings of the Twenty-fourth International Joint Conference on Artificial Intelligence. Buenos Aires: IJCAI, 2015. [14] SU T R, LEE H Y. Learning chinese word repre-sentations from glyphs of characters[EB/OL]. arXiv, 2017. arXiv:1708.04755. [15] YU Jinxing, JIAN Xun, XIN Hao, et al. Joint embeddings of chinese words, characters, and fine-grained subcharacter components[C] //Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: ACL, 2017: 286-291. [16] CAO Shaosheng, LU Wei, ZHOU Jun, et al. cw2vec: Learning chinese word embeddings with stroke n-gram information[C] ///Proceedings of the Thirty-second AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018. [17] LECUN Y, CHOPRA S, HADSELL R, et al. A tutorial on energy-based learning[M] //Predicting Structured Data. Cambridge: MIT Press, 2006. [18] JOACHIMS T. Optimizing search engines using clickthrough data[C] //Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2002: 133-142. [19] WESTON J, BENGIO S, USUNIER N. Wsabie: scaling up to large vocabulary image annotation[C] //Proceedings of the Twenty-second International Joint Conference on Artificial Intelligence. Barcelona: IJCAI, 2011. [20] DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12(7):257-269. [21] 汪祥,贾焰,周斌,等. 基于中文维基百科链接结构与分类体系的语义相关度计算[J]. 小型微型计算机系统, 2011, 32(11):2237-2242. WANG Xiang, JIA Yan, ZHOU Bin, et al. Computing semantic relatedness using Chinese Wikipedia links and taxonom[J]. Journal of Chinese Computer Systems, 2011, 32(11):2237-2242. [22] JIN P, WU Y F. SemEval-2012 Task 4: evaluating Chinese word similarity[M] //Proceedings of the First Joint Conference on Lexical and Computational Semantics. Montreal:[s.n.] , 2012: 374-377. [23] 董强,董振东.基于知网的相关概念场的构建[M] //语言计算与基于内容的文本处理.北京: 清华大学出版社,2003:364-370. DONG Qiang, DONG Zhendong. Construction of hownet-based relevant concept field[C] //Language Computing and Content-based Text Processing Translation. Beijing: Tsinghua University Press, 2003: 364-370. |
[1] | 张一鸣,王国胤,胡军,傅顺. 基于密度峰值和网络嵌入的重叠社区发现[J]. 《山东大学学报(理学版)》, 2021, 56(1): 91-102. |
[2] | 许侃,刘瑞鑫,林鸿飞,刘海峰,冯娇娇,李家平,林原,徐博. 基于异质网络嵌入的学术论文推荐方法[J]. 《山东大学学报(理学版)》, 2020, 55(11): 35-45. |
[3] | 张凌,任雪芳. 数据智能分类与分类智能检索-识别[J]. 《山东大学学报(理学版)》, 2020, 55(10): 7-14. |
[4] | 林明星. 基于变分结构引导滤波的低照度图像增强算法[J]. 《山东大学学报(理学版)》, 2020, 55(9): 72-80. |
[5] | 王佳麒,杨沐昀,赵铁军,赵臻宇. 检务文书检索数据集的构建[J]. 《山东大学学报(理学版)》, 2020, 55(7): 81-87. |
[6] | 余鹰,吴新念,王乐为,张应龙. 基于标记相关性的多标记三支分类算法[J]. 《山东大学学报(理学版)》, 2020, 55(3): 81-88. |
[7] | 温柳英,袁伟. 多标签符号型属性值划分的聚类方法[J]. 《山东大学学报(理学版)》, 2020, 55(3): 58-69. |
[8] | 张敏情,周能,刘蒙蒙,王涵,柯彦. 基于Paillier的同态加密域可逆信息隐藏[J]. 《山东大学学报(理学版)》, 2020, 55(3): 1-8,18. |
[9] | 王新乐,杨文峰,廖华明,王永庆,刘悦,俞晓明,程学旗. 基于多维度特征的主题标签流行度预测[J]. 《山东大学学报(理学版)》, 2020, 55(1): 94-101. |
[10] | 李妮,关焕梅,杨飘,董文永. 基于BERT-IDCNN-CRF的中文命名实体识别方法[J]. 《山东大学学报(理学版)》, 2020, 55(1): 102-109. |
[11] | 张迪,查东东,刘华勇. 带两类形状参数的三次λμ-α-DP曲线的构造[J]. 《山东大学学报(理学版)》, 2019, 54(9): 114-126. |
[12] | 杨亚茹, 王永庆, 张志斌, 刘悦, 程学旗. 基于多元信息融合的用户关联模型[J]. 《山东大学学报(理学版)》, 2019, 54(9): 105-113. |
[13] | 郝长盈,兰艳艳,张海楠,郭嘉丰,徐君,庞亮,程学旗. 基于拓展关键词信息的对话生成模型[J]. 《山东大学学报(理学版)》, 2019, 54(7): 68-76. |
[14] | 廖祥文,徐阳,魏晶晶,杨定达,陈国龙. 基于双层堆叠分类模型的水军评论检测[J]. 《山东大学学报(理学版)》, 2019, 54(7): 57-67. |
[15] | 徐洋,孙建忠,黄磊,谢晓尧. 基于WiFi定位的区域人群轨迹模型[J]. 《山东大学学报(理学版)》, 2019, 54(5): 8-20. |
|