您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (1): 8-19.doi: 10.6040/j.issn.1671-9352.0.2021.393

• • 上一篇    

废弃采石场自然恢复过程中土壤和植被特征

宋百敏1,2,刘建3,张玉虎4,王仁卿2,5*   

  1. 1.东营市胜利教育管理服务中心教研室, 山东 东营 257091;2.山东大学生命科学学院, 山东 青岛 266237;3.山东大学环境研究院, 山东 青岛 266237;4.首都师范大学资源环境与旅游学院, 北京 100048;5.山东省植被生态示范工程技术研究中心, 山东 青岛 266237
  • 发布日期:2021-12-21
  • 作者简介:宋百敏(1966— ),男,博士,研究方向为恢复生态学和生物教育教学. E-mail:1514466231@qq.com*通信作者简介:王仁卿(1955— ),男,博士,教授,博士生导师,研究方向为植物生态学和恢复生态学. E-mail:wrq@sdu.edu.cn
  • 基金资助:
    教育部博士点基金资助项目(20030422030)

Characteristics of soil and vegetation during natural restoration process in abandoned quarry

SONG Bai-min1,2, LIU Jian3, ZHANG Yu-hu4, WANG Ren-qing2,5*   

  1. 1. Teaching and Research Institute, Education Management Services Center of Shengli Dongying, Dongying 257091, Shandong, China;
    2. School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China;
    3. Environmental Research Institute, Shandong University, Qingdao 266237, Shandong, China;
    4. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, Beijing, China;
    5. Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao 266237, Shandong, China
  • Published:2021-12-21

摘要: 用空间代替时间的生态学研究方法,对北京市门头沟区妙峰山镇自然恢复1、5、15、32年等4个不同演替阶段的废弃采石场和一个未受采石影响且自然恢复大于50年的对照样地的土壤理化性质、植物群落物种组成、群落特征及其与土壤性状之间的关系进行了分析。结果表明,在自然恢复初期,土壤肥力极低,严重缺乏氮素和有机质;植物物种组成简单,主要为牛筋草(Eleusine indica)和画眉草(Eragrostis pilosa)。随着生态恢复的进行,土壤有机质不断积累,土壤养分呈增多趋势,土壤粒径土壤容重逐渐减小,土壤物理化学性状逐渐得到改善自然恢复过程中,群落优势物种演替缓慢,在自然恢复515年的样地中,优势物种都是虎尾草(Chloris virgata)和狗尾草(Setaria viridis),直到32年时,优势物种才被灌木荆条(Vitex negundo var. heterophylla)、荩草(Arthraxon hispidus)和多年生中华隐子草(Cleistogenes chinensis)所代替,这与自然恢复大于50年对照样地中的优势物种情况基本一致。Jaccard系数表明,恢复32年的样地与对照样地相比已达到中等相似水平。自然恢复过程中,植被总盖度和地上生物量总体呈增大趋势,物种多样性、物种丰富度先逐渐增加,到32年后才保持相对稳定。在生态恢复过程中,土壤理化性状的变化与群落结构动态相对应。本研究表明,自然生态恢复的过程是土壤-植被系统协同演化的过程,北京西山废弃采石场可以依靠自然力恢复到对照样地状态,但过程较为缓慢,要加快生态恢复的进程,需适当予以人工辅助。

关键词: 自然恢复, 土壤理化性质, 植被特征, 废弃采石场

Abstract: Adopted the method of the space series to represent the time series, soil physical and chemical properties, plant community species composition, community characteristics and their relationships with soil properties were comparative analyzed at four different successional stages of typical abandoned quarries in Miaofengshan, Beijing, including 1, 5, 15, 32-year and one control plot without quarrying influence at least more than 50 years. The results showed that at the initial stage of natural recovery, soil fertility was extremely low and there was a serious lack of total N and organic matter. The plant species composition was simple, mainly contain Eleusine indica and Eragrostis pilosa. With the process of natural ecological restoration, soil physical and chemical properties gradually improved. Soil organic matter continuously accumulated and soil nutrients showed an increasing trend. Soil particle size and soil bulk density decreased gradually. From the view of dominance, at different succession stages, the dominant species in community continuously changed slowly and the replacement of dominant species was obvious. At 5 years and 15 years plots, Chloris virgata and Setaria viridis were the same dominant species. As succession proceeded to 32 years, the dominant species in community were replaced by shrub(Vitex negundo var. heterophylla), Arthraxon hispidus and Cleistogenes chinensis which were similar to the dominant species in the control plots over 50 years. Jaccard coefficient indicated that the community similarity in 32-year plots have reached a moderately similar level compared to that of in the control plots.With the process of community succession, the total vegetation coverage and aboveground biomass exhibited increasing trends, and the species diversity and richness of species gradually increased and then remained relatively stable after 32 years of succession. In the process of natural ecological restoration, the changes of soil physical and chemical properties correspond to the dynamics of community structure. Our study showed that the process of natural ecological restoration was essentially a co-evolution process of soil-vegetation system. The initial restoration achieved to control plot in the abandoned quarry of Beijing Western Mountain rely on natural power, but the process was slower. In order to accelerate the process of ecological recovery, artificial assistance was necessary.

Key words: natural restoration, soil physical and chemical property, vegetation characteristics, abandoned quarry

中图分类号: 

  • Q948
[1] CLEMENTE A S, WERNER C, MAGUAS C, et al. Restoration of a limestone quarry: effect of soil amendments on the establishment of native Mediterraneansclerophyllous shrubs[J]. Restoration Ecology, 2004, 12(1):20-28.
[2] 张起风, 石章胜, 祝劲, 等. 资源枯竭型城市废弃采石场植被恢复与再利用探讨:以黄石市黄荆山北麓废弃采石场复绿工程为例[J]. 林业资源管理, 2015(2):145-149. ZHANG Qifeng, SHI Zhangsheng, ZHU Jin, et al. Discussion on vegetation recovery and reuse of abandoned quarry in resource-exhausted city: taking northern side of the Huangjingshan Mountain in Huangshi City as an example[J]. Forest Resources Management, 2015(2):145-149.
[3] 李晓燕, 沈婷, 章宏伟, 等. 舟山无居民海岛生态修复技术研究:以周家园山采石区生态修复为例[J]. 人民长江, 2020, 51(S2):53-56. LI Xiaoyan, SHEN Ting, ZHANG Hongwei, et al. The study on the technique of ecological restoration in uninhabited island in Zhoushan: a case study in the restoration of the quarry in the Zhoujiayuan Mountain[J]. Yangtze River, 2020, 51(S2):53-56.
[4] HIGSON S J. Restoration thrift quarry management[J]. Quarry Management, 2009, 8:19-21.
[5] MEIRA-NETO J A A, CLEMENTE A, OLIVEIRA G, et al. Post-fire and post-quarry rehabilitation successions in Mediterranean-like ecosystems: implications for ecological restoration[J]. Ecological Engineering, 2011, 8:1132-1139.
[6] SOLIVERES S, MONERRIS J, CORTINA J. Irrigation, organic fertilization and species successional stage modulate the response of woody seedlings to herbaceous competition in a semi-arid quarry restoration[J]. Applied Vegetation Science, 2012, 2:175-186.
[7] WANG Y B, LIU D Y, ZHANG L, et al. Patterns of vegetation succession in the process of ecological restoration on the deserted land of Shizishan Copper Tailings in Tongling City[J]. Acta Botanica Sinica, 2004, 7:780-787.
[8] RUIZ-JAEN M C, AIDE T M. Restoration success: how is it being measured?[J]. Restoration Ecology, 2005, 13:569-577.
[9] DAILY G C. Restoring value to the worlds degraded lands[J]. Science, 1995, 269:350-354.
[10] 张成梁, LI B L. 美国煤矿废弃地的生态修复[J]. 生态学报, 2011, 31(1):276-285. ZHANG Chengliang, LI B L. Ecological reclamation and restoration of abandoned coal mine in the United States[J]. Acta Ecologica Sinica, 2011, 31(1):276-285.
[11] JACKSON S T, HOBBS R J. Ecological restoration in the light of ecological history[J]. Science, 2009, 325:567-568.
[12] 生物学系地植物学小组. 北京市的植被[J]. 北京大学学报, 1959(2):159-168. Subdivision of Geobotany, Botany Division, Faculty of Biology. The vegetation of Peking[J]. Journal of Peking University, 1959(2):159-168.
[13] ZHOU Z, SUN O J, HUANG J, et al. Land-use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe ecosystem[J]. Functional Ecology, 2006, 20:753-762.
[14] PAGE A L, MILLER R H, KEENEY D R. Methods of soil analysis[M]. 2nd ed. Wisconsin: ASA and SSSA, 1982: 5-168.
[15] 张金屯. 植被数量生态学方法[M]. 北京: 中国科学技术出版社, 1995: 26-78. ZHANG Jintun. Methods of quantitative vegetation ecology[M]. Beijing: Science and Technology Press of China, 1995: 26-78.
[16] FANG J Y, WANG X P, SHEN Z H, et al. Methods and protocols for plant community inventory[J]. Biodiversity Science, 2009, 6:533-548.
[17] 安慧, 杨新国, 刘秉儒, 等. 荒漠草原区弃耕地植被演替过程中植物群落生物量及土壤养分变化[J].应用生态学报, 2011, 12:3145-3149. AN Hui, YANG Xinguo, LIU Bingru, et al. Changes of plant community biomass and soil nutrients during the vegetation succession on abandoned cultivated land in desert steppe region[J]. Chinese Journal of Applied Ecology, 2011, 12:3145-3149.
[18] 杨振意, 薛立, 许建新. 采石场废弃地的生态重建研究进展[J]. 生态学报, 2012, 32(16):5264-5274. YANG Zhenyi, XUE Li, XU Jianxin. Advances in ecology restoration of abandoned quarries[J]. Acta Ecologica Sinica, 2012, 32(16):5264-5274.
[19] 董鸣, 王义凤, 孔繁志, 等. 陆地生物群落调查观测与分析[M]. 北京: 中国标准出版社, 1996: 184-190. DONG Ming, WANG Yifeng, KONG Fanzhi, et al. Survey, observation and analysis of terrestrial biocommunities[M]. Beijing: Standards Press of China, 1996: 184-190.
[20] 李荣平, 闫巧玲. 放牧与刈割对科尔沁草甸植被演替的影响[J]. 干旱区资源与环境, 2006, 20(2):180-184. LI Rongping,YAN Qiaoling. Effects of grazing and mowing on the meadow vegetation succession in Kerqin Steppe[J]. Journal Arid Land Resource Environment, 2006, 20(2):180-184.
[21] AERTS R, CHAPINM F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Advances in Ecological Research, 2000, 30:1-67.
[22] PÉREZ-RAMOSI M, ROUMET C, CRUZ P, et al.Evidence for a ‘plant community economics spectrum’driven by nutrient and water limitations in a Mediterranean rangeland of southern France[J]. Journal of Ecology, 2012, 100:1315-1327.
[23] LALIBERTÉ E, SHIPLEY B, NORTON D A, et al. Which plant traits determine abundance under long-term shifts in soil resource availability and grazing intensity?[J]. Journal of Ecology, 2012, 100:662-677.
[24] SCHLESINGER WH, REYNOLDS J F, CUNNINGHAM G L, et al. Biological feedbacks in global desertification[J]. Science, 1990, 247:1043-1048.
[25] GAMER W, STEINBERGER Y. A proposed mechanism for the formation of “Fertile Island” in the desert ecosystem[J]. Journal Arid Environment, 1989, 16:257-262.
[26] 孙应龙, 钱拴, 延昊, 等. 2000—2018年云南省典型矿区植被生态时空变化特征:以临沧市为例[J]. 生态环境学报, 2019,28(12):2381-2389. SUN Yinglong, QIAN Shuan, YAN Hao, et al. Spatial-temporal dynamics of vegetation ecosystem in typical coal mining area of Yunnan Province during 2000-2018: a case study in Lincang[J]. Ecology and Environmental Sciences, 2019, 28(12):2381-2389.
[27] JOHNANNES M H, DAVID T. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment[J]. Ecology, 2000, 81:88-99.
[28] CHEN J, STARK J M. Plant species effects and carbon and nitrogen cycling in sagebrush crested wheatgrass soil[J]. Soil Biol Biochem, 2000, 32:47-57.
[29] 张霄, 张红玉, 陆兆华, 等. 高寒地区路堑边坡植被恢复效果[J]. 生态学报, 2017, 37(5):1450-1457. ZHANG Xiao, ZHANG Hongyu, LU Zhaohua, et al. Vegetation restoration effects of rock cutting slopes in the cold region of China[J]. Acta Ecologica Sinica, 2017, 37(5):1450-1457.
[30] TROPEK R, KADLEC T, KARESOVA P, et al. Spontaneous succession in limestone quarries as an effective restoration tool for endangered arthropods and plants[J]. Journal of Applied Ecology, 2010, 1:139-147.
[31] HARRIS J. Soil microbial communities and restoration ecology: facilitators or followers[J]. Science, 2009, 325:573-574.
[32] VITOUSEK P M, TURNER D R, SANFORD R L. Litter decomposition on the Mauna Loa environmental matrix, Hawai'i: patterns, mechanisms, and models[J]. Ecology, 1994, 75:418-429.
[33] GENTILI R, SGORBATI S, BARONI C. Plant species patterns and restoration perspectives in the highly disturbed environment of the Carrara Marble quarries(Apuan Alps, Italy)[J]. Restoration Ecology, 2011, 19(101):32-42.
[34] WANG L, MU Y, ZHANG Q F, et al. Effects of vegetation restoration on soil physical properties in the wind-water erosion region of the Northern Loess Plateau of China[J]. Clean-Soil Air Water, 2012, 1:7-15.
[35] MERINO-MARTIN L, BRESHEARS D D, MORENO-DELAS HERAS M, et al. Ecohydrological source-sink interrelationships between vegetation patches and soil hydrological properties along a disturbance gradient reveal a restoration threshold[J]. Restoration Ecology, 2012, 3:360-368.
[36] JIAO F, WEN Z M, AN S S. Changes in soil properties across a chronosequence of vegetation restoration on the Loess Plateau of China[J]. Catena, 2011, 2:110-116.
[37] BRADSHAW A D. Restoration of mined lands-using natural process[J]. Ecological Engineering, 1997, 8:255-269.
[38] RILEY J D, CRAFT I W, RIMMER D L, et al. Restoration of magnesianlimestone grassland: optimizing the time for seed collection by vacuum harvesting[J]. Restoration Ecology, 2004, 3:313-317.
[1] 张文馨,范小莉,王强,房用,梁玉. 黄河三角洲植物多样性与生态系统多功能性间的关系[J]. 《山东大学学报(理学版)》, 2020, 55(1): 110-116.
[2] 张秀华,齐海鹰,王仁卿,刘建. 山东省自然保护区植物多样性研究[J]. 《山东大学学报(理学版)》, 2019, 54(7): 1-10.
[3] 杜 宁,郭卫华,吴大千,王 琦,王仁卿* . 昆嵛山典型林下灌草层植物种间关系研究[J]. J4, 2007, 42(3): 71-77 .
[4] 徐 飞,郭卫华,王玉芳,王 炜,杜 宁,王仁卿* . 济南市校园6个绿化树种光合荧光特征比较初探[J]. J4, 2007, 42(5): 86-94 .
[5] 吴大千,杜 宁,王 炜,翟 雯,王玉芳,王仁卿,张治国* . 昆嵛山森林群落下灌草层结构与多样性研究[J]. J4, 2007, 42(1): 83-88 .
[6] 张宪强,郭卫华,杨继红,刘成程,王仁卿* . 刺槐(Robinia pseudoacacia)无性系种群结构与生长动态的研究[J]. J4, 2006, 41(2): 135-139 .
[7] 李延成,程传民,杨吉华*,王兴翠,刘培娟 . 新泰市土门林场不同混交林枯落物层持水性能的研究[J]. J4, 2007, 42(1): 69-75 .
[8] 张秀华,齐海鹰,刘建,王仁卿,赵静. 山东省珍稀濒危植物分布及其影响因素[J]. 《山东大学学报(理学版)》, 2021, 56(5): 42-50.
[9] 张文馨,王蕙,范小莉,王强,房用,梁玉. 山东孔林植物群落动态变化及演替分析[J]. 《山东大学学报(理学版)》, 2021, 56(11): 43-50.
[10] 王仁卿,张煜涵,孙淑霞,郑培明. 黄河三角洲植被研究回顾与展望[J]. 《山东大学学报(理学版)》, 2021, 56(10): 135-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!