您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (3): 7-13.doi: 10.6040/j.issn.1671-9352.0.2022.209

• • 上一篇    下一篇

一类有限2群与二面体群之间的同态个数

张薇1,2,赖吉娜1,2,郭继东1,2*,张良1,2   

  1. 1.伊犁师范大学数学与统计学院, 新疆 伊宁 835000;2.伊犁师范大学应用数学研究所, 新疆 伊宁 835000
  • 发布日期:2023-03-02
  • 作者简介:张薇(1998— ),女,硕士研究生,研究方向为群论. E-mail:zw108853@163.com*通信作者简介:郭继东(1965— ),男,教授,研究方向为群论. E-mail:guojd662@163.com
  • 基金资助:
    新疆维吾尔自治区自然科学基金项目(2022D01C334);2022年度伊梨师范大学高级别培育项目(YSPY2022012)

The number of homomorphisms between a class of finite 2-groups and dihedral groups

ZHANG Wei1,2, LAI Ji-na1,2, GUO Ji-dong1,2*, ZHANG Liang1,2   

  1. 1. College of Mathematics and Statistics, Yili Normal University, Yining 835000, Xinjiang, China;
    2. Institute of applied Mathematics, Yili Normal University, Yining 835000, Xinjiang, China
  • Published:2023-03-02

摘要: 根据G2和二面体群的结构特征以及元素的性质,计算G2和二面体群之间的同态个数。作为应用,验证这两个群之间的同态个数满足T.Asai和T.Yoshida 的猜想。

关键词: 有限2群, 二面体群, 群同态

Abstract: Based on the group structure and element properties of G2 and dihedral groups, the number of homomorphisms between G2 and dihedral groups is calculated. As an application, it verifies that T.Asai and T.Yoshidas conjecture is satisfied such groups.

Key words: finite 2-groups, dihedral groups, group homomorphism

中图分类号: 

  • O152.6
[1] FROBENIUS G. Uber einen fundamentalsatz der grouppentheorie[M] // Gesammelte Abhandlungen. Berlin: Springer-Verlag, 1903.
[2] YOSHIDA T. |Hom(A,G)|,I[J]. Journal of Algebra, 1993, 156(1):125-156.
[3] ASAI T, YOSHIDA T. |Hom(A,G)|,II[J]. Journal of Algebra,1993, 160(1):273-285.
[4] RAJKUMAR R, GAYATHRI M, ANITHA T. The number of homomorphisms from dihedral group into some finite groups[J]. Mathematical Sciences International Research Journal, 2015, 4(1):161-165.
[5] RAJKUMAR R, GAYATHRI M, ANITHA T. The number of homomorphisms from quaternion group into some finite groups[J]. International Journal of Mathematics and Its Applications, 2015, 3(3-A):23-30.
[6] 李红霞,郭继东,海进科. 二面体群到一类亚循环群之间的同态个数[J]. 山东大学学报(理学版),2019,54(6):34-40. LI Hongxia, GUO Jidong, HAI Jinke. The number of homomorphisms from the dihedral group into a class of metacyclic groups [J]. Journal of Shandong University(Natural Science), 2019, 54(6):34-40.
[7] 赖吉娜,郭继东,海进科. 一类非交换群和二面体群之间的同态个数[J]. 山东大学学报(理学版),2020,55(8):80-86. LAI Jina, GUO Jidong, HAI Jinke. The number of homomorphisms from a class of non-Abelian groups into dihedral groups[J]. Journal of shandong University(Natural Science), 2020, 55(8):80-86.
[8] JOHNSON J. The number of group homomorphisms from Dm into Dn[J]. The College Mathematics Journal, 2013, 44:190-192.
[9] 徐明曜,曲海鹏. 有限p群[M]. 北京:北京大学出版社,2010. XU Mingyao, QU Haipeng. Finite p groups[M]. Beijing: Beijing University Press, 2010.
[10] JOHNS. A course on group theory[M]. Cambridge: Cambridge University Press, 1978.
[11] SIERPINSKI, W. Elementary theory of numbers [M]. Amsterdam: North-Holand, 1988.
[1] 曹刘峰. 二面体群Grothendieck代数的Maschke定理[J]. 《山东大学学报(理学版)》, 2023, 58(2): 44-50.
[2] 廖青清,郭继东,张良. 一类内交换p-群与四元数群之间的同态个数[J]. 《山东大学学报(理学版)》, 2022, 57(2): 45-49.
[3] 谢伟,郭继东. 中心二面体群与二面体群之间的同态个数[J]. 《山东大学学报(理学版)》, 2020, 55(8): 80-86.
[4] 赖吉娜,郭继东. 一类非交换群与二面体群之间的同态个数[J]. 《山东大学学报(理学版)》, 2020, 55(12): 30-36.
[5] 李红霞,郭继东,海进科. 二面体群到一类亚循环群之间的同态个数[J]. 《山东大学学报(理学版)》, 2019, 54(6): 34-40.
[6] 赵艳微,海进科. 关于群同态的T.Asai和T.Yoshida问题[J]. 《山东大学学报(理学版)》, 2019, 54(2): 101-105.
[7] 李宁英,郭继东,海进科. 具有Abel直因子的群到有限群间的同态个数[J]. 《山东大学学报(理学版)》, 2019, 54(12): 59-62.
[8] 张良,海进科. 亚循环群到亚循环群之间的同态个数[J]. 山东大学学报(理学版), 2018, 53(6): 17-22.
[9] 刘妮,张苗苗. 连续定向完备序半群及其范畴性质[J]. 山东大学学报(理学版), 2016, 51(6): 57-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!