您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (7): 106-114.doi: 10.6040/j.issn.1671-9352.0.2022.198

•   • 上一篇    下一篇

方差变点模型CUSUM型估计量的相合性

朱慧敏(),王梓楠,高敏,杨文志*()   

  1. 安徽大学数学科学学院, 安徽 合肥 230601
  • 收稿日期:2022-04-01 出版日期:2023-07-20 发布日期:2023-07-05
  • 通讯作者: 杨文志 E-mail:zhuimin1114@163.com;wzyang@ahu.edu.cn
  • 作者简介:朱慧敏(1995—),女,硕士研究生,研究方向概率论与数理统计. E-mail: zhuimin1114@163.com
  • 基金资助:
    安徽省自然科学基金面上基金资助项目(2008085MA14);安徽大学大学生创新创业训练项目(202010357001);安徽省省级“双基”示范项目概率论(Y010512024/032)

The consistency of CUSUM-type estimator in variance change-point model

Huimin ZHU(),Zinan WANG,Min GAO,Wenzhi YANG*()   

  1. School of Mathematical Sciences, Anhui University, Hefei 230601, Anhui, China
  • Received:2022-04-01 Online:2023-07-20 Published:2023-07-05
  • Contact: Wenzhi YANG E-mail:zhuimin1114@163.com;wzyang@ahu.edu.cn

摘要:

基于混合误差序列, 研究方差变点模型CUSUM型估计量的相合性问题。分别在高阶矩条件和低阶矩条件下, 获得CUSUM型估计量的强收敛速度和弱收敛速度, 推广了已有方差变点模型在误差满足独立同分布条件下获得的一些理论成果。作为应用, 利用方差变点方法对美国超威半导体公司股票收益率的波动率是否发生变化开展分析工作, 最终准确找到波动率发生变化的位置。

关键词: 方差变点模型, 混合序列, CUSUM型估计量, 收敛速度

Abstract:

The consistency problem of CUSUM-type estimator is investigated in the variance change-point model based on the mixing error sequences. The strong convergence rate and weak convergence rate for the CUSUM-type estimator are obtained by the high moment condition and low moment condition, respectively. It extends some theoretical results of the variance change-point model based on the independent and identically distributed errors. As an application, the variance change-point method is used to analyze whether the volatility of US Advanced Micro Devices? stock returns has changed. Then, the position of the change in volatility is found accurately.

Key words: variance change-point, mixing sequence, CUSUM type estimator, convergence rate

中图分类号: 

  • O213.1

图1

AMD股票收益率自相关系数图"

图2

AMD股票收益率折线图"

1 CSÖRGO M , HORVÁTH L . Limit theorems in change-point analysis[M]. Chicheste: Wiley, 1997: 21- 110.
2 CHEN Jie , GUPTA A K . Parametric statistical change point analysis: with applications to genetics, medicine, and finance[M]. 2nd ed Boston: Birkhauser, 2012: 68- 100.
3 GOMBAY E , HORVÁTH L , HUŠKOVÁ M . Estimators and tests for change in variances[J]. Statistics & Decisions, 1996, 14 (2): 145- 159.
4 INCLÁN C , TIAO G C . Use of cumulative sums of squares for retrospective detection of changes of variance[J]. Journal of the American Statistical Association, 1994, 89 (427): 913- 923.
5 CHEN Jie , GUPTA A K . Testing and locating variance change points with application to stock prices[J]. Journal of the American Statistical Association, 1997, 92 (438): 739- 747.
doi: 10.1080/01621459.1997.10474026
6 LEE S , PARK S . The cusum of squares test for scale changes in infinite order moving average processes[J]. Scandinavian Journal of Statistics, 2001, 28 (4): 625- 644.
doi: 10.1111/1467-9469.00259
7 LEE S , HA J , NA O , et al. The cusum test for parameter change time series models[J]. Scandinavian Journal of Statistics, 2003, 30 (4): 781- 796.
doi: 10.1111/1467-9469.00364
8 QIN Ruibing , LIU Weiqi , TIAN Zheng . A strong convergence rate of estimator of variance change in linear processes and its applications[J]. Statistics, 2017, 51 (2): 314- 330.
doi: 10.1080/02331888.2016.1268614
9 XU M , WU Y , JIN B . Detection of a change-point in variance by a weighted sum of powers of variances test[J]. Journal of Applied Statistics, 2019, 46 (4): 664- 679.
doi: 10.1080/02664763.2018.1510475
10 房炜杰, 金百锁. 方差变点的加权累积和估计的极限性质[J]. 中国科学技术大学学报, 2020, 50 (4): 389- 395.
FANG Weijie , JIN Baisuo . Limit properties of weighted cumulative sum estimator of change-point in variance[J]. Journal of University of Science and Technology of China, 2020, 50 (4): 389- 395.
11 ANTOCH J , HUŠKOVÁ M , VERAVERBEKE N . Change-point problem and bootstrap[J]. Journal of Nonparametric Statistics, 1995, 5 (2): 123- 144.
doi: 10.1080/10485259508832639
12 KOKOSZKA P , LEIPUS R . Change-point in the mean of dependent observations[J]. Statistics & Probability Letters, 1998, 40 (4): 385- 393.
13 GUREVICH G , VEXLER A . Retrospective change point detection: from parametric to distribution free policies[J]. Communications in Statistics-Simulation and Computation, 2010, 39 (5): 899- 920.
doi: 10.1080/03610911003663881
14 BAI Jushan . Common breaks in means and variance for panel data[J]. Journal of Econometrics, 2010, 157 (1): 78- 92.
doi: 10.1016/j.jeconom.2009.10.020
15 SHI Xiaoping , WU Yuehua , MIAO Baiqi . Strong convergence rate of estimators of change point and its application[J]. Computational Statistics & Data Analysis, 2009, 53 (4): 990- 998.
16 DING Saisai , FANG Hongyan , DONG Xiang , et al. The CUSUM statistics of change-point models based on dependent sequences[J]. Journal of Applied Statistics, 2022, 49 (10): 2593- 2611.
doi: 10.1080/02664763.2021.1913104
17 HARCHAOUI Z , LÉVY-LEDUC C . Multiple change-point estimation with a total variation penalty[J]. Journal of the American Statistical Association, 2010, 105 (492): 1480- 1493.
doi: 10.1198/jasa.2010.tm09181
18 NIU Yue , HAO Ning , ZHANG Heping . Multiple change-point detection: a selective overview[J]. Statistical Science, 2016, 31 (4): 611- 623.
19 TRUONG C , OUDRE L , VAYATIS N . Selective review of offline change point detection methods[J]. Signal Processing, 2020, 167, 107299.
doi: 10.1016/j.sigpro.2019.107299
20 王小刚, 王黎明. 一类面板模型中部分结构变点的检测和估计[J]. 山东大学学报(理学版), 2012, 47 (7): 91- 99.
WANG Xiaogang , WANG Liming . Detection and estimation of partial structural change in a class of panel models[J]. Journal of Shandong University (Natural Science), 2012, 47 (7): 91- 99.
21 HORVÁTH L , RICE G . Extensions of some classical methods in change point analysis[J]. TEST, 2014, 23 (2): 219- 255.
doi: 10.1007/s11749-014-0368-4
22 SHIRYAEV A N . Stochastic disorder problems[M]. Berlin: Springer, 2019: 217- 260.
23 BRADLEY R C . On the spectral density and asymptotic normality of weakly dependent random fields[J]. Journal of Theoretical Probability, 1992, 5 (2): 355- 373.
doi: 10.1007/BF01046741
24 陆传荣, 林正炎. 混合相依变量的极限理论[M]. 北京: 科学出版社, 1997: 2- 34.
LU Chuangrong , LIN Zhengyan . Limit theory for mixing dependent random variables[M]. Beijing: Science Press, 1997: 2- 34.
25 BRADLEY R C . Every "lower psi-mixing" Markov chain is "interlaced rho-mixing"[J]. Stochastic Processes and Their Applications, 1997, 72 (2): 221- 239.
doi: 10.1016/S0304-4149(97)00090-2
26 PELIGRAD M , GUT A . Almost-sure results for a class of dependent random variables[J]. Journal of Theoretical Probability, 1999, 12 (1): 87- 104.
doi: 10.1023/A:1021744626773
27 UTEV S , PELIGRAD M . Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J]. Journal of Theoretical Probability, 2003, 16 (1): 101- 115.
doi: 10.1023/A:1022278404634
28 WU Qunying , JIANG Yuanying . Some strong limit theorems for $\tilde{\rho}$-mixing sequences of random variables[J]. Statistics & Probability Letters, 2008, 78 (8): 1017- 1023.
29 WANG Xuejun , LI Xiaoqin , YANG Wenzhi , et al. On complete convergence for arrays of rowwise weakly dependent random variables[J]. Applied Mathematics Letters, 2012, 25 (11): 1916- 1920.
doi: 10.1016/j.aml.2012.02.069
30 吴群英. 混合序列的概率极限理论[M]. 北京: 科学出版社, 2006: 173- 175.
WU Qunying . Probability limit theory of mixing sequences[M]. Beijing: Science Press, 2006: 173- 175.
31 王学军, 胡舒合, 李晓琴, 等. 不同分布$\tilde{\rho}$混合序列乘积和的强收敛性[J]. 高校应用数学学报(A辑), 2010, 25 (1): 38- 42.
WANG Xuejun , HU Shuhe , LI Xiaoqin , et al. Strong convergence properties of sums of products for $\tilde{\rho}$-mixing sequence with different distributions[J]. Applied Mathematics A Journal of Chinese Universities (Ser. A), 2010, 25 (81): 38- 42.
32 张亚运, 吴群英. ρ-混合序列的重对数律矩收敛的精确渐近性[J]. 山东大学学报(理学版), 2017, 52 (4): 13- 20.
ZHANG Yayun , WU Qunying . Precise asymptotics in the law of iterated logarithm for the moment convergence of ρ-mixing sequences[J]. Journal of Shandong University (Natural Science), 2017, 52 (4): 13- 20.
33 邓小芹, 吴群英. ρ混合序列完全矩收敛的精确渐近性[J]. 山东大学学报(理学版), 2020, 55 (6): 32- 40.
DENG Xiaoqin , WU Qunying . Precise asymptotics of complete moment convergence for ρ-mixing sequence[J]. Journal of Shandong University (Natural Science), 2020, 55 (6): 32- 40.
[1] 王曾珍,刘华勇,查东东. 带形状参数的三角β-B曲线的渐进迭代逼近[J]. 《山东大学学报(理学版)》, 2021, 56(6): 81-94.
[2] 邓小芹,吴群英. ρ-混合序列完全矩收敛的精确渐近性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 32-40.
[3] 陈倩竹,胡海平. 基于最优解距离估计的光滑凸极小化的一阶算法[J]. 《山东大学学报(理学版)》, 2020, 55(4): 102-107.
[4] 张亚运,吴群英. ρ-混合序列的重对数律矩收敛的精确渐近性[J]. 山东大学学报(理学版), 2017, 52(4): 13-20.
[5] 郑璐璐, 葛梅梅, 刘艳芳, 王学军. φ混合序列的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(04): 14-19.
[6] 伍欣叶,吴群英. 混合删失模型中密度函数K-M估计的r-阶相合速度[J]. 山东大学学报(理学版), 2014, 49(1): 105-110.
[7] 刘婷婷,陈志勇,李晓琴*,杨文志. 随机变量序列的Berry-Esseen界[J]. 山东大学学报(理学版), 2014, 49(03): 101-106.
[8] 唐玲. φ混合序列滑动和过程回归模型的相合性[J]. J4, 2013, 48(3): 89-92.
[9] 付艳莉,吴群英. 强混合序列部分和之和乘积的几乎处处中心极限定理[J]. J4, 2010, 45(8): 104-108.
[10] 张新东,王秋华 . 避免二阶导数计算的Newton迭代法的一个改进[J]. J4, 2007, 42(7): 72-76 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .
[2] 程智1,2,孙翠芳2,王宁1,杜先能1. 关于Zn的拉回及其性质[J]. J4, 2013, 48(2): 15 -19 .
[3] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[4] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[5] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[6] 李敏1,2,李歧强1. 不确定奇异时滞系统的观测器型滑模控制器[J]. 山东大学学报(理学版), 2014, 49(03): 37 -42 .
[7] 廖明哲. 哥德巴赫的两个猜想[J]. J4, 2013, 48(2): 1 -14 .
[8] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[9] 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16 -23 .
[10] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .