《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (7): 105-112.doi: 10.6040/j.issn.1671-9352.1.2023.055
摘要:
相似情绪类别识别混乱导致识别效果下降的问题一直是多模态情绪识别任务的一大挑战。针对此问题, 提出一个基于聚类群组归一化的关系图神经网络模型方法。首先使用3个不同特征提取器提取出3种模态特征, 并融入说话者编码后进行拼接, 既丰富特征表示又保留原始信息; 其次使用Transformer提取上下文信息; 最后将特征节点输入关系图卷积神经网络后, 通过对节点进行聚类分组, 并独立地进行群组归一化, 使相似节点更加相似, 缓解相似情绪容易识别混乱的问题。通过实验验证, 提出的网络模型在IEMOCAP数据集四分类上的F1值可达到86.34%, 验证该方法的有效性, 并且目前该模型达到IEMOCAP数据集的最佳性能。
中图分类号:
1 | JORDANM I.Serial order: a parallel distributed processing approach[J].Advances in Psychology,1997,121,471-495. |
2 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22)[2023-11-24]. http://arxiv.org/abs/1609.02907. |
3 |
MAJUMDERN,PORIAS,HAZARIKAD,et al.DialogueRNN: an attentive RNN for emotion detection in conversations[J].Proceedings of the AAAI Conference on Artificial Intelligence,2019,33(1):6818-6825.
doi: 10.1609/aaai.v33i01.33016818 |
4 | CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11)[2023-11-24]. http://arxiv.org/abs/1412.3555. |
5 | GHOSAL D, MAJUMDER N, GELBUKH A, et al. COSMIC: commonsense knowledge for emotion identification in conversa- tions[EB/OL]. (2020-10-06)[2023-11-24]. http://arxiv.org/abs/2010.02795. |
6 | GHOSAL D, MAJUMDER N, PORIA S, et al. DialogueGCN: a graph convolutional neural network for emotion recognition in conversation[EB/OL]. (2019-08-30)[2023-11-24]. http://arxiv.org/abs/1908.11540. |
7 | HU Jingwen, LIU Yuchen, ZHAO Jinming, et al. MMGCN: multimodal fusion via deep graph convolution network for emotion recognition in conversation[EB/OL]. (2021-07-14)[2023-11-24]. http://arxiv.org/abs/2107.06779. |
8 | CHEN Ming, WEI Zhewei, HUANG Zengfeng, et al. Simple and deep graph convolutional networks[C]//International Conference on Machine Learning. [S. l. ]: ACM, 2020: 1725-1735. |
9 | ZHOU Kaixiong, HUANG Xiao, LI Yuening, et al. Towards deeper graph neural networks with differentiable group normalization[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2020: 4917-4928. |
10 | JOSHI A, BHAT A, JAIN A, et al. COGMEN: contextualized GNN based multimodal emotion recognition[EB/OL]. (2022-05-05)[2023-11-24]. http://arxiv.org/abs/2205.02455. |
11 | SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[M]//The Semantic Web. Cham: Springer, 2018: 593-607. |
12 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 6000-6010. |
13 |
BUSSOC,BULUTM,LEEC C,et al.IEMOCAP: interactive emotional dyadic motion capture database[J].Language Resources and Evaluation,2008,42(4):335-359.
doi: 10.1007/s10579-008-9076-6 |
14 | EYBEN F, WÖLLMER M, SCHULLER B. Opensmile: the munich versatile and fast open-source audio feature extrac-tor[C]//Proceedings of the 18th ACM International Conference on Multimedia. Firenze: ACM, 2010: 1459-1462. |
15 | BALTRUŠAITIS T, ROBINSON P, MORENCY L P. OpenFace: an open source facial behavior analysis toolkit[C]//2016 IEEE Winter Conference on Applications of Computer Vision (WACV). New York: IEEE, 2016: 1-10. |
16 | REIMERS N, GUREVYCH I. Sentence-BERT: sentence embeddings using siamese BERT-networks[EB/OL]. (2019-08-27)[2023-12-24]. http://arxiv.org/abs/1908.10084. |
17 |
CAID,LAMW.Graph transformer for graph-to-sequence learning[J].Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(5):7464-7471.
doi: 10.1609/aaai.v34i05.6243 |
18 | PORIA S, CAMBRIA E, HAZARIKA D, et al. Context-dependent sentiment analysis in user-generated videos[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Strouds-burg: Association for Computational Linguistics, 2017: 873-883. |
19 |
MAJUMDERN,HAZARIKAD,GELBUKHA,et al.Multimodal sentiment analysis using hierarchical fusion with context modeling[J].Knowledge-based Systems,2018,161,124-133.
doi: 10.1016/j.knosys.2018.07.041 |
20 | HU Dou, HOU Xiaolong, WEI Lingwei, et al. MM-DFN: multimodal dynamic fusion network for emotion recognition in conversations[C]//ICASSP 2022: 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Singapore: IEEE, 2022: 7037-7041. |
21 | SCOTTI V, GALATI F, SBATTELLA L, et al. Combining deep and unsupervised features for multilingual speech emotion recognition[C]//Pattern Recognition: ICPR International Workshops and Challenges. Cham: Springer, 2021: 114-128. |
22 | VAN DER MAATENL,HINTONG.Visualizing data using t-SNE[J].Journal of Machine Learning Research,2008,9(86):2579-2605. |
[1] | 黄兴宇,赵明宇,吕子钰. 面向图神经网络表征学习的类别知识探针[J]. 《山东大学学报(理学版)》, 2024, 59(7): 85-94. |
[2] | 郑晨颖,陈颖悦,侯贤宇,江连吉,廖亮. 一种邻域粒的模糊C均值聚类算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 35-44. |
[3] | 朱金,付玉,管文瑞,王平心. 基于自然最近邻的样本扰动三支聚类[J]. 《山东大学学报(理学版)》, 2024, 59(5): 45-51. |
[4] | 孙嘉睿,杜明晶. 模糊边界剥离聚类[J]. 《山东大学学报(理学版)》, 2024, 59(3): 27-36, 50. |
[5] | 徐华畅,许倩,赵钰琳,梁峰宁,徐凯,朱红. 基于改进EfficientNetV2的脑胶质瘤IDH1突变状态预测方法[J]. 《山东大学学报(理学版)》, 2023, 58(7): 60-66. |
[6] | 金鑫,于非凡,戴雨桐,李兹谦,邹永魁. 基于聚类分析和鉴别信息的教学效果评价模型分析[J]. 《山东大学学报(理学版)》, 2023, 58(7): 115-120. |
[7] | 王新生,朱小飞,李程鸿. 标签指导的多尺度图神经网络蛋白质作用关系预测方法[J]. 《山东大学学报(理学版)》, 2023, 58(12): 22-30. |
[8] | 马慧,魏立力. 基于犹豫三角模糊相关系数的聚类分析[J]. 《山东大学学报(理学版)》, 2023, 58(12): 118-126. |
[9] | 凡嘉琛,王平心,杨习贝. 基于三支决策的密度敏感谱聚类[J]. 《山东大学学报(理学版)》, 2023, 58(1): 59-66. |
[10] | 李心雨,范辉,刘惊雷. 基于自适应图调节和低秩矩阵分解的鲁棒聚类[J]. 《山东大学学报(理学版)》, 2022, 57(8): 21-38. |
[11] | 柳利芳,马园园. 基于多视角对称非负矩阵分解的跨模态信息检索方法[J]. 《山东大学学报(理学版)》, 2022, 57(7): 65-72. |
[12] | 孙林,梁娜,徐久成. 基于自适应邻域互信息与谱聚类的特征选择[J]. 《山东大学学报(理学版)》, 2022, 57(12): 13-24. |
[13] | 武祺然,周力凯,孙金金,王念鸽,余群芳. 浙江省空气质量变化特征研究——基于函数型数据分析[J]. 《山东大学学报(理学版)》, 2021, 56(7): 53-64. |
[14] | 张斌艳,朱小飞,肖朝晖,黄贤英,吴洁. 基于半监督图神经网络的短文本分类[J]. 《山东大学学报(理学版)》, 2021, 56(5): 57-65. |
[15] | 杨婷,朱恒东,马盈仓,汪义瑞,杨小飞. 基于L2,1范数和流形正则项的半监督谱聚类算法[J]. 《山东大学学报(理学版)》, 2021, 56(3): 67-76. |
|