您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (4): 84-92.doi: 10.6040/j.issn.1671-9352.0.2023.323

• • 上一篇    下一篇

具有捕食Allee效应和密度依赖扩散的捕食-食饵模型的共存解

马田田,李善兵*   

  1. 西安电子科技大学数学与统计学院, 陕西 西安 710126
  • 出版日期:2025-04-20 发布日期:2025-04-08
  • 通讯作者: 李善兵(1988— ),男,副教授,博士,研究方向为反应扩散方程及其应用. E-mail:lishanbing@xidian.edu.cn
  • 作者简介:马田田(2001— ),女,硕士研究生,研究方向为反应扩散方程及其应用. E-mail:tiantianMA2580@163.com*通信作者:李善兵(1988— ),男,副教授,博士,研究方向为反应扩散方程及其应用. E-mail:lishanbing@xidian.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11901446);中国博士后特别资助项目(2021T140530)

Coexistence solutions of a predator-prey model with Allee effect and density-dependent diffusion in the predator

MA Tiantian, LI Shanbing*   

  1. College of Mathematics and Statistics, Xidian University, Xian 710126, Shaanxi, China
  • Online:2025-04-20 Published:2025-04-08

摘要: 研究一类齐次Dirichlet边值条件下具有捕食种群Allee效应和密度依赖扩散的捕食-食饵模型的共存解。基于共存解的先验估计,利用正锥上的不动点指数理论建立了共存解存在的充分条件。结果表明,密度依赖扩散对共存解的存在性产生显著影响,同时也发现两物种间的功能反应函数对共存解的存在性有本质的影响。

关键词: 捕食-食饵模型, Allee效应, 密度依赖扩散, 共存解, 不动点指数理论

Abstract: This paper is concerned with the coexistence solutions of a predator-prey model with Allee effect and density-dependent diffusion in the predator under homogeneous Dirichlet boundary conditions. Based on a priori estimate of coexistence solutions, the sufficient conditions for the existence of coexistence solutions are established by using the theory of fixed point index in positive cone. The results show that the density-dependent diffusion has a significant effect on the existence of coexistence solutions, and it is also find that the functional response function between the two species has an essential effect on the existence of coexistence solutions.

Key words: predator-prey model, Allee effect, density-dependent diffusion, coexistence solutions, the theory of fixed point index

中图分类号: 

  • O175
[1] DENNIS B. Allee effects: population growth, critical density, and the chance of extinction[J]. Natural Resource Modeling, 1989, 3(4):481-538.
[2] LI Shuai, YUAN Sanling, JIN Zhen, et al. Bifurcation analysis in a diffusive predator-prey model with spatial memory of prey, Allee effect and maturation delay of predator[J]. Journal of Differential Equations, 2023, 357:32-63.
[3] BOUKAL D S, SABELIS M W, LUDEK B. How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses[J]. Theoretical Population Biology, 2007, 72(1):136-147.
[4] WU Daiyong, ZHAO Hongyong. Spatiotemporal dynamics of a diffusive predator-prey system with Allee effect and threshold hunting[J]. Journal of Nonlinear Science, 2020, 30(3):1015-1054.
[5] SEN D, MOROZOV A, GHORAI S, et al. Bifurcation analysis of the predator-prey model with the Allee effect in the predator[J]. Mathematical Biology, 2021, 84(1):1-27.
[6] RANA S, BHATTACHARYA S, SAMANTA S. Complex dynamics of a three-species food chain model with fear and Allee effect[J]. International Journal of Bifurcation and Chaos, 2022, 32(6):1-27.
[7] KUANG Y, SO W H. Analysis of a delayed two-stage population model with space-limited recruitment[J]. SIAM Journal on Applied Mathematics, 1995, 55(6):1675-1696.
[8] RANA S, BHOWMICK A R, SARDAR T. Invasive dynamics for a predator-prey system with Allee effect in both populations and a special emphasis on predator mortality[J]. Chaos, 2021, 31(3):1-22.
[9] FRAILE J M, MEDINA P K, LÓPEZ-GÓMEZ J, et al. Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation[J]. Journal of Differential Equations, 1996, 127(1):295-319.
[10] 叶其孝,李正元,王明新,等. 反应扩散方程引论[M]. 北京:科学出版社,2011. YE Qixiao, LI Zhengyuan, WANG Mingxin, et al. Introduction to reaction-diffusion equations[M]. Beijing: Science Press, 2011.
[11] 郭大钧. 非线性泛函分析[M]. 北京:高等教育出版社,2015. GUO Dajun. Nonlinear functional analysis[M]. Beijing: Higher Education Press, 2015.
[12] DANCER E N. On positive solutions of some pairs of differential equations[J]. Transactions of the American Mathematical Society, 1984, 284(2):729-743.
[13] LI L. Coexistence theorems of steady-states for predator-prey interacting systems[J]. Transactions of the American Mathematical Society, 1988, 305(1):143-143.
[14] DANCER E N. On the indices of fixed points of mappings in cones and applications[J]. Journal of Mathematical Analysis and Applications, 1983, 91(1):131-151.
[15] NAKASHIMA K, YAMADA Y. Positive steady states for prey-predator models with cross-diffusion[J]. Advances in Differential Equations, 1996, 1(6):1099-1122.
[16] GILBARG D, TRUDINGER N S. Elliptic partial differential equations of second order[M]. Berlin: Springer, 1983.
[1] 韩卓茹,李善兵. 具有空间异质和合作捕食的捕食-食饵模型的正解[J]. 《山东大学学报(理学版)》, 2022, 57(7): 35-42.
[2] 张蓓蓓,许瑶,周游,凌智. 具Allee效应的种群入侵数学模型[J]. 《山东大学学报(理学版)》, 2022, 57(1): 50-55.
[3] 刘华,叶勇,魏玉梅,杨鹏,马明,冶建华,马娅磊. 一类离散宿主-寄生物模型动态研究[J]. 山东大学学报(理学版), 2018, 53(7): 30-38.
[4] 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75.
[5] 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53.
[6] 张瑞玲, 王万雄, 秦丽娟. 具有强Allee效应的2-物种的囚徒困境博弈[J]. 山东大学学报(理学版), 2015, 50(11): 98-103.
[7] 李海侠. 带有保护区域的加法Allee效应捕食-食饵模型的共存解[J]. 山东大学学报(理学版), 2015, 50(09): 88-94.
[8] 伍代勇, 张海. 具有Allee效应和时滞的单种群离散模型的稳定性和分支[J]. 山东大学学报(理学版), 2014, 49(07): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!