《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (8): 106-115.doi: 10.6040/j.issn.1671-9352.0.2023.188
• • 上一篇
李敖宇
LI Aoyu
摘要: 研究一类具有饱和治愈率和双线性发生率的离散扩散SEIR模型行波解的存在性。首先利用上下解的方法结合Schauder不动点定理证明截断问题的解的存在性; 其次, 通过极限方法证明当R0>1, c>c*时, 系统存在连接无病平衡点和正平衡点的行波解, 通过分析证明行波解在无穷远处的渐近行为。
中图分类号:
[1] KERMACK W O, MCKENDRICK A G. Contributions to the mathematical theory of epidemics[J]. Bulletin of Mathematical Biology, 1991, 53(1/2):33-55. [2] HOSONO Y, ILYAS B. Traveling waves for a simple diffusive epidemic model[J]. Mathematical Models and Methods in Applied Science, 1995, 5(7):935-966. [3] DRIESSCHE P,WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1/2):29-48. [4] CHEN X F, GUO J S. Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics[J]. Mathematische Annalen, 2003, 326(1):123-146. [5] CHEN X F, FU S C, GUO J S. Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices[J].Siam Journal on Mathematical Analysis, 2006, 38(1):233-258. [6] WANG Haiyan, WANG Xiangsheng. Traveling wave phenomena in a Kermack-Mckendrick SIR model[J]. Journal of Dynamics and Differential Equations, 2016, 28(1):143-166. [7] XU Zhiting. Traveling waves for a diffusive SEIR epidemic model[J]. Communications on Pure Applied Analysis, 2016, 15(3):871-892. [8] TIAN Baochuan,YUAN Rong. Traveling waves for a diffusive SEIR epidemic model with non-local reaction[J]. Applied Mathematical Modelling, 2017, 50:432-449. [9] ZHOU Xueyong, CUI Jingan. Analysis of stability and bifurcation for an SEIR epidemic model with saturated recovery rate[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(11):4438-4450. [10] ZHOU Jiangbo, SONG Liyuan, WEI Jingdong. Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay[J]. Journal of Differential Equations, 2019, 268(8):4491-4524. [11] BAI Zhenguo, WU Shiliang. Traveling waves in a delayed SIR epidemic model with nonlinear incidence[J]. Applied Mathematics and Computation, 2015, 263:221-232. [12] CHEN Yanyu, GUO Jongshenq, HAMEL F. Traveling waves for a lattice dynamical system arising in a diffusive endemic model[J]. Nonlinearity, 2016, 30(6):2334-2359. |
[1] | 李丝雨,杨赟瑞. 一类非对称非局部扩散系统双稳行波解的稳定性[J]. 《山东大学学报(理学版)》, 2025, 60(4): 40-49. |
[2] | 张行,焦玉娟,杨进苗. 一类扩散的捕食者-食饵模型行波解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 97-105. |
[3] | 林府标,张千宏. 用Riccati方程求KdV-Burgers-Kuramoto方程的显式新行波解[J]. 《山东大学学报(理学版)》, 2019, 54(12): 24-31. |
[4] | 马霞,姚美萍. 汉坦病毒传播模型行波解的存在性[J]. 《山东大学学报(理学版)》, 2018, 53(12): 48-52. |
[5] | 张秋华, 刘利斌, 周恺. 时滞非局部扩散Lotka-Volterra 竞争系统行波解的存在性[J]. 山东大学学报(理学版), 2015, 50(01): 90-94. |
[6] | 吕海玲,刘希强,牛磊. 一类推广的[G′/G]展开方法及其在非线性数学物理方程中的应用[J]. J4, 2010, 45(4): 100-105. |
|