您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (8): 106-115.doi: 10.6040/j.issn.1671-9352.0.2023.188

• • 上一篇    

一类带有饱和治愈率的SEIR格微分动力系统的行波解

李敖宇   

  1. 西安电子科技大学数学与统计学院, 陕西 西安 710071
  • 发布日期:2025-07-25
  • 基金资助:
    陕西省杰出青年科学基金项目(2020JC-24)

Traveling wave solutions of a class of SEIR lattice differential equations with saturated recovery rate

LI Aoyu   

  1. School of Mathematics and Statistics, Xidian University, Xian 710071, Shaanxi, China
  • Published:2025-07-25

摘要: 研究一类具有饱和治愈率和双线性发生率的离散扩散SEIR模型行波解的存在性。首先利用上下解的方法结合Schauder不动点定理证明截断问题的解的存在性; 其次, 通过极限方法证明当R0>1, c>c*时, 系统存在连接无病平衡点和正平衡点的行波解, 通过分析证明行波解在无穷远处的渐近行为。

关键词: 饱和治愈率, SEIR模型, 行波解, 格微分方程

Abstract: In this paper, the existence of traveling wave solutions for a kind of discrete diffusion SEIR model with saturated recovery rate and bilinear occurrence rate is studied. Firstly, the existence of solutions for truncationproblem is proved by using the method of upper and lower solutions and the Schauder fixed point theorem; Secondly, it is proved by the limit method that when R0>1, c>c*, the system has traveling wave solutions connecting the disease-free equilibrium point and the positive equilibrium point. Finally, the asymptotic behavior of traveling wave solution at infinity is proved.

Key words: saturated recovery rate, SEIR model, traveling wave solution, lattice differential equation

中图分类号: 

  • O175
[1] KERMACK W O, MCKENDRICK A G. Contributions to the mathematical theory of epidemics[J]. Bulletin of Mathematical Biology, 1991, 53(1/2):33-55.
[2] HOSONO Y, ILYAS B. Traveling waves for a simple diffusive epidemic model[J]. Mathematical Models and Methods in Applied Science, 1995, 5(7):935-966.
[3] DRIESSCHE P,WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1/2):29-48.
[4] CHEN X F, GUO J S. Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics[J]. Mathematische Annalen, 2003, 326(1):123-146.
[5] CHEN X F, FU S C, GUO J S. Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices[J].Siam Journal on Mathematical Analysis, 2006, 38(1):233-258.
[6] WANG Haiyan, WANG Xiangsheng. Traveling wave phenomena in a Kermack-Mckendrick SIR model[J]. Journal of Dynamics and Differential Equations, 2016, 28(1):143-166.
[7] XU Zhiting. Traveling waves for a diffusive SEIR epidemic model[J]. Communications on Pure Applied Analysis, 2016, 15(3):871-892.
[8] TIAN Baochuan,YUAN Rong. Traveling waves for a diffusive SEIR epidemic model with non-local reaction[J]. Applied Mathematical Modelling, 2017, 50:432-449.
[9] ZHOU Xueyong, CUI Jingan. Analysis of stability and bifurcation for an SEIR epidemic model with saturated recovery rate[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(11):4438-4450.
[10] ZHOU Jiangbo, SONG Liyuan, WEI Jingdong. Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay[J]. Journal of Differential Equations, 2019, 268(8):4491-4524.
[11] BAI Zhenguo, WU Shiliang. Traveling waves in a delayed SIR epidemic model with nonlinear incidence[J]. Applied Mathematics and Computation, 2015, 263:221-232.
[12] CHEN Yanyu, GUO Jongshenq, HAMEL F. Traveling waves for a lattice dynamical system arising in a diffusive endemic model[J]. Nonlinearity, 2016, 30(6):2334-2359.
[1] 李丝雨,杨赟瑞. 一类非对称非局部扩散系统双稳行波解的稳定性[J]. 《山东大学学报(理学版)》, 2025, 60(4): 40-49.
[2] 张行,焦玉娟,杨进苗. 一类扩散的捕食者-食饵模型行波解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 97-105.
[3] 林府标,张千宏. 用Riccati方程求KdV-Burgers-Kuramoto方程的显式新行波解[J]. 《山东大学学报(理学版)》, 2019, 54(12): 24-31.
[4] 马霞,姚美萍. 汉坦病毒传播模型行波解的存在性[J]. 《山东大学学报(理学版)》, 2018, 53(12): 48-52.
[5] 张秋华, 刘利斌, 周恺. 时滞非局部扩散Lotka-Volterra 竞争系统行波解的存在性[J]. 山东大学学报(理学版), 2015, 50(01): 90-94.
[6] 吕海玲,刘希强,牛磊. 一类推广的[G′/G]展开方法及其在非线性数学物理方程中的应用[J]. J4, 2010, 45(4): 100-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!