《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (9): 41-51.doi: 10.6040/j.issn.1671-9352.0.2024.377
• • 上一篇
严莉1,呼海林1,王高洲1,张闻彬1,潘法定1,张啸2,郑艳伟2*
YAN Li1, HU Hailin1, WANG Gaozhou1, ZHANG Wenbin1, PAN Fading1, ZHANG Xiao2, ZHENG Yanwei2*
摘要: 为优化动态网络的拓扑构建与资源分配,提出基于长短时序预测的拓扑构建与控制(long short-term prediction-based topology construction and control, LSPTCC)框架。采用长短期记忆(long short-term memory, LSTM)网络和Informer模型进行多维时间序列的长时和短时预测,精准捕捉数据中的时间依赖性与非平稳性波动。基于预测结果,使用增强容量约束设计(enhanced capacity constrained design, ECCD)算法构建最小生成树(minimum spanning tree, MST),优化节点间的连接,减少传输路径的总损耗。利用最大网络流算法实现动态的流量分配与调整,确保系统在流量波动情况下的高效流量资源利用。实验采用光伏消纳数据集,结果表明该框架能够准确预测发电量和用电量,并通过优化拓扑结构和资源分配,减少电力传输损耗,验证LSPTCC框架的有效性和鲁棒性。
中图分类号:
[1] YU Yong, SI Xiaosheng, HU Changhua, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7):1235-1270. [2] DEY R, SALEM F M. Gate-variants of gated recurrent unit(GRU)neural networks[C] //2017 IEEE 60th International Midwest Symposium on Circuits and Systems(MWSCAS). Medford: IEEE, 2017:1597-1600. [3] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //Advances in Neural Information Processing Systems. Vancouver: Curran Associates, 2017:6000-6010. [4] HAN Kai, WANG Yifan, CHEN Huazhong, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(1):87-110. [5] ZHOU Haibo, ZHANG Shuang, PENG Jianxin, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[C] //Proceedings of the 35th AAAI Conference on Artificial Intelligence. Virtual: AAAI, 2021:11106-11115. [6] 王红瑞,刘晓红,唐奇,等. 基于小波变换的支持向量机水文过程预测[J]. 清华大学学报(自然科学版),2010,50(9):1378-1382. WANG Hongrui, LIU Xiaohong, TANG Qi, et al. Hydrological process prediction based on wavelet transform and support vector machine[J]. Journal of Tsinghua University(Science and Technology), 2010, 50(9):1378-1382. [7] 李洁,林永峰,陈亮,等. 基于深度经验模态分解的金融市场时序预测[J]. 计算机工程与设计,2019,40(12):3613-3619. LI Jie, LIN Yongfeng, CHEN Liang, et al. Financial market time series prediction based on deep empirical mode decomposition[J]. Computer Engineering and Design, 2019, 40(12):3613-3619. [8] PAVLYSHENKO B. Using stacking approaches for machine learning models[C] //2018 IEEE Second International Conference on Data Stream Mining & Processing(DSMP). Lviv: IEEE, 2018:255-258. [9] OSIPOV V, SANDERS P SINGLER J. The filter-kruskal minimum spanning tree algorithm[C] //The Eleventh Workshop on Algorithm Engineering and Experiments(ALENEX). New York: Society for Industrial and Applied Mathematics, 2009:52-61. [10] LI Haiming, XIA Qiyang, WANG Yong. Research and improvement of Kruskal algorithm[J]. Journal of Computer and Communications, 2017, 5(12):63-69. [11] MANEN S, GUILLAUMIN M, GOOL L V. Prime object proposals with randomized Prims algorithm[C] //Proceedings of the IEEE International Conference on Computer Vision(ICCV). Sydney: IEEE, 2013:2536-2543. [12] DAGAR Sunny. Modified Prims algorithm[J]. Journal of Computer and Information Technology, 2012, 3(2):26-29. [13] 来卫国,李鸥,程军,等. 一种新的求解度约束最小生成树的遗传算法[J]. 计算机仿真,2008,25(8):162-165. LAI Weiguo, LI Ou, CHENG Jun, et al. A new genetic algorithm for solving degree-constrained minimum spanning tree[J]. Computer Simulation, 2008, 25(8):162-165. [14] 周毅,周良才,丁佳立,等. 基于深度强化学习的电网拓扑优化和潮流控制的方法[J]. 上海交通大学学报,2021,55(增刊2):25-31. ZHOU Yi, ZHOU Liangcai, DING Jiali, et al. Method for topology optimization and power flow control based on deep reinforcement learning[J]. Journal of Shanghai Jiao Tong University, 2021,55(Suppl.2):25-31. [15] 富坤,高金辉,赵晓梦,等. 融合全局结构信息的拓扑优化图卷积网络[J]. 计算机应用,2022,42(2):357-364. FU Kun, GAO Jinhui, ZHAO Xiaomeng, et al. Topology optimization graph convolutional network integrating global structural information[J]. Computer Applications, 2022, 42(2):357-364. [16] CORMEN T H, LEISERSON C E, RIVEST R L, et al. Introduction to algorithms[M]. Cambridge: MIT Press, 2009:714-731. [17] EDMONDS J, KARP R M, Theoretical improvements in algorithmic efficiency for network flows[J]. Journal of the ACM, 1972, 19(2):248-264. [18] GOLDBERG A V, TARJAN R E. A new approach to the maximum flow problem[J]. Journal of the ACM, 1988, 35(4):921-940. [19] KORTE B, VYGEN J. Combinatorial optimization: theory and algorithms[M]. Berlin: Springer, 2012:177-214. [20] ORLIN J B. Max flows in O(nm)time or better[C] //Proceedings of the 45th Annual ACM Symposium on Theory of Computing(STOC). Palo Alto: ACM, 2013:765-774. [21] BIRGE J R, LOUVEAUX F. Introduction to stochastic programming[M]. New York: Springer, 2011. [22] BEN-TAL A, NEMIROVSKI A. Robust optimization: methodology and applications[J]. Mathematical Programming, 2000,92(3):453-480. [23] MIETTINEN K. Nonlinear multiobjective optimization[M]. Dordrecht: Kluwer Academic Publishers, 1999:239-249. [24] DEAN J, GHEMAWAT S. Mapreduce: simplified data processing on large clusters[J]. Communications of the ACM, 2008, 51(1):107-113. |
[1] | 韦修喜,彭茂松,黄华娟. 基于改进蝴蝶算法的水文地质参数优化[J]. 《山东大学学报(理学版)》, 2024, 59(3): 37-50. |
[2] | 许侃,刘瑞鑫,林鸿飞,刘海峰,冯娇娇,李家平,林原,徐博. 基于异质网络嵌入的学术论文推荐方法[J]. 《山东大学学报(理学版)》, 2020, 55(11): 35-45. |
[3] | 张超,梁英,方浩汕. 支持隐私保护的社交网络信息推荐方法[J]. 《山东大学学报(理学版)》, 2020, 55(3): 9-18. |
[4] | 谢小杰,梁英,董祥祥. 社交网络用户敏感属性迭代识别方法[J]. 《山东大学学报(理学版)》, 2019, 54(3): 10-17, 27. |
[5] | 肖炜茗,王贵君. 基于Bernstein多项式的SISO三层前向神经网络的设计与逼近[J]. 山东大学学报(理学版), 2018, 53(9): 55-61. |
[6] | 索春凤, 王贵君. 最大交互数对非齐次T-S模糊系统的潜在影响[J]. 山东大学学报(理学版), 2015, 50(08): 14-19. |
[7] | 吴瑞海 董吉文 段琪庆. 变尺度混沌粒子群与小波的地基沉降预测应用[J]. J4, 2009, 44(11): 75-78. |
[8] | . 一种基于驾驶员学习过程的在线估计算法[J]. J4, 2009, 44(7): 83-88. |
[9] | 朱世伟,赛 英 . 基于主成分分析和粗径向基神经网络的财务预警模型研究[J]. J4, 2008, 43(11): 48-53 . |
|