《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 122-129.doi: 10.6040/j.issn.1671-9352.0.2023.366
• • 上一篇
李昕洋1,孙冰1*,周鑫2
LI Xinyang1, SUN Bing1*, ZHOU Xin2
摘要: 定义李color代数上的双导子,建立满足一定条件的李color代数的双导子、交换映射、型心之间的内在联系。
中图分类号:
| [1] MCANALLY D S, BRAKCEN A J. Uncolouring of Lie colour algebras[J]. Bulletin of the Australian Mathematical Society, 1997, 55:425-428. [2] KAC V G. Classification of infinite-dimensional simple linearly compact Lie superalgebras[J]. Advances in Mathematics, 1998, 139(1):1-55. [3] REE R. Generalized Lie elements[J]. Canadian Journal of Mathematics, 1960, 12:493-502. [4] SCHEUNERT M. Generalized Lie algebras[J]. Journal of Mathematical Physics, 1979, 20:712-720. [5] ZHANG Qingcheng, ZHANG Yongzheng. Derivations and extensions of Lie color algebra[J]. Acta Mathematica Scientia, 2008, 28(4):933-948. [6] SU Yucai, ZHAO Kaiming, ZHU Linsheng. Simple Lie color algebras of weyl type[J]. Israel Journal of Mathematics, 2003, 137:109-123. [7] SU Yucai, ZHAO Kaiming, ZHU Linsheng. Classification of derivation-simple color algebras related to locally finite derivations[J]. Journal of Mathematical Physics, 2004, 45(1):525-536. [8] LIU Xuewen, GUO Xiangqian, ZHAO Kaiming. Biderivations of the block Lie algebras[J]. Linear Algebra and Its Applications, 2018, 538:43-55. [9] BENKOVIC D. Biderivations of triangular algebras[J]. Linear Algebra and Its Applications, 2009, 431(9):1587-1602. [10] BREŠAR M, ZHAO Kaiming. Biderivations and commuting linear maps on Lie algebras[J]. Mathematics, 2018, 28(3):885-900. [11] TANG Liming, MENG Lingyi, CHEN Liangyun. Super-biderivations and linear super-commuting maps on the Lie superalgebras[J]. Communications in Algebra, 2020, 48(12):5076-5085. [12] MELVILLE D J. Centroids of nilpotent Lie algebras[J]. Communications in Algebra, 1992, 20(12):3649-3682. [13] VINBERG E B. Generalized derivations of algebras[C] //Third Siberian School: Algebra and Analysis. Irkutsk: American Mathematical Society, 1995:185-188. |
| [1] | 马丽丽,李强. δ-李color代数的交换扩张[J]. 《山东大学学报(理学版)》, 2020, 55(8): 38-42. |
| [2] | 费秀海,戴磊. 广义矩阵代数上双可导映射的可加性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 85-90. |
| [3] | 张芳娟. 素*-环上的非线性强保*-交换映射[J]. J4, 2011, 46(6): 67-69. |
|
||