您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (08): 6-14.doi: 10.6040/j.issn.1671-9352.1.2014.170

• 论文 • 上一篇    下一篇

拟单层覆盖上的覆盖粗糙集族

吴正江1,2, 刘永利2, 高岩2   

  1. 1. 西南交通大学信息科学与技术学院, 四川 成都 610031;
    2. 河南理工大学矿山信息化重点开放实验室, 河南 焦作 454003
  • 收稿日期:2014-06-02 修回日期:2014-07-08 出版日期:2014-08-20 发布日期:2014-09-24
  • 作者简介:吴正江(1981-),男,博士,副教授,研究方向为粗糙集理论、数据挖掘.E-mail:wuzhengjiang@hpu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61202286);河南理工大学博士基金(B2010-74)

Cover rough sets on a semi-monolayer cover

WU Zheng-jiang1,2, LIU Yong-li2, GAO Yan2   

  1. 1. School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan, China;
    2. Henan Provincial Lab. of Mine Informatization, Henan Polytechnic University, Jiaozuo 454003, Henan, China
  • Received:2014-06-02 Revised:2014-07-08 Online:2014-08-20 Published:2014-09-24

摘要: 拟单层覆盖是形式化表示包含缺省值的离散信息表一种有效的方式,同时它也是离散化连续值时,包容误分类对象的理想的数学模型。因为拟单层覆盖是极小且精确的,所以拟单层覆盖上的近似算子较一般的覆盖粗糙近似算子更为特殊。从集合及点集两个角度定义了四种近似算子,并在讨论其性质的基础上,也讨论了这四种近似算子之间的关系。

关键词: 粗糙集, 近似算子模型, 拟单层覆盖

Abstract: Semi-monolayer cover is an efficient way to formalize the missing value in information table with discrete values. When system discrete the continuous attribute-values, it is a perfect mathematic model to content the misclassification object. Because a semi-monolayer cover is the minimal and precise cover, and the approximation operator on the cover is more special than the standard cover rough approximation operator. In this paper, four pairs of approximation operators are defined from two ways. One way starts with the subset of U, other way bases on the set of dot in U. Based on the discussion of their properties, the relations of the four pairs of approximation operators are discussed.

Key words: rough set, approximation operator, semi-monolayer cover

中图分类号: 

  • TP18
[1] PAWLAK Z. Rough sets[J]. Informational Journal of Information and Computer Sciences, 1982, 11:341-356.
[2] 张文修,吴伟志,梁吉业,等. 粗糙集理论与方法[M]. 北京: 科学出版社, 2001. ZHANG Wenxiu, WU Weizhi, LIANG Jiye, et al. Rough set theory and method[M]. Beijing: Science Publisher, 2001.
[3] SLOWINSKI R, VANDERPOOTEN D, A generalized definition of rough approximations based on similarity[J]. IEEE Transactions on Knowledge and Data Engineering, 2000, 12(2):331-336.
[4] BONIKOWSKI Z, BRYNIARSKI E, WYBRANIEC-SKARDOWSKA U. Extensions and intentions in the rough set theory[J]. Information Sciences,1998,107:149-167.
[5] CHEN Degang, WANG Changzhong, HU Qinghua. A new approach to attributes reduction of consistent and inconsistent covering decision systems with covering rough sets[J]. Information Sciences, 2007, 177:3500-3518.
[6] HU Qinghua, YU Daren, XIE Zongxia.Neighborhood classifiers[J]. Expert Systems with Applications, 2008, 34:866-876.
[7] DAI Jianhua. Rough set approach to incomplete numerical data[J]. Information Sciences, 2013, 241:43-57.
[8] CHEN Hongmei, LI Tianrui, RUAN Da. Maintenance of approximations in incomplete ordered decision systems while attribute values coarsening or refining[J]. Knowledge-Based Systems, 2012, 31:140-161.
[9] 高岩. 覆盖粗糙集研究[D]. 成都:西南交通大学,2011. GAO Yan. The study of cover rough set[D]. Chengdu: Southwest Jiaotong University, 2011.
[10] ZHU William. Relationship among basic concepts in covering-based rough sets[J]. Information Sciences, 2009,179:2478-2486.
[11] TSANG Eric C C, CHEN Denggang, YEUNG D S. Approximations and reducts with covering generalized rough sets[J]. Computers and Mathematics with Applications, 2008, 56:279-289.
[12] LIN Guoping, LIANG Jiye, QIAN Yuehua. Multigranulation rough sets: from partition to covering[J]. Information Sciences, 2013, 241:101-118.
[13] WANG Shiping, ZHU William, ZHU Qingxin,et al. Four matroidal structures of covering and their relationships with rough sets[J]. International Journal of Approximate Reasoning, 2013, 54:1361-1372.
[14] YANG Tian, LI Qingguo. Reduction about approximation spaces of covering generalized rough sets[J]. International Journal of Approximate Reasoning, 2010, 51:335-345.
[15] RESTREPO M, CORNELIS C, GOMEZ J. Duality, conjugacy and adjointness of approximation operators in covering-based rough sets[J]. International Journal of Approximate Reasoning, 2014, 55:469-485.
[1] 李同军,黄家文,吴伟志. 基于相似关系的不完备形式背景属性约简[J]. 山东大学学报(理学版), 2018, 53(8): 9-16.
[2] 左芝翠,张贤勇,莫智文,冯林. 基于决策分类的分块差别矩阵及其求核算法[J]. 山东大学学报(理学版), 2018, 53(8): 25-33.
[3] 李丽,管涛,林和. 基于泛系算子的泛系混合并联粗糙集模型[J]. 山东大学学报(理学版), 2017, 52(7): 22-29.
[4] 胡谦,米据生,李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017, 52(7): 30-36.
[5] 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104.
[6] 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104.
[7] 翟俊海, 张垚, 王熙照. 相容粗糙模糊集模型[J]. 山东大学学报(理学版), 2014, 49(08): 73-79.
[8] 罗海燕, 吕萍, 刘林忠, 杨洵. 云环境下基于模糊粗糙AHP的企业信任综合评估[J]. 山东大学学报(理学版), 2014, 49(08): 111-117.
[9] 林姿琼, 王敬前, 祝峰. 矩阵方法计算覆盖粗糙集中最小、最大描述[J]. 山东大学学报(理学版), 2014, 49(08): 97-101.
[10] 石素玮, 李进金, 谭安辉. 一类覆盖粗糙直觉模糊集模型的模糊粗糙度和粗糙熵[J]. 山东大学学报(理学版), 2014, 49(08): 86-91.
[11] 安秋生, 孔祥玉. 函数依赖与多值依赖的再研究[J]. 山东大学学报(理学版), 2014, 49(08): 1-5.
[12] 冯林1,2,罗芬3,方丹3,原永乐2. 基于改进扩展正域的属性核与属性约简方法[J]. J4, 2012, 47(1): 72-76.
[13] 张灵均,徐久成,李双群,李晓艳. 相斥邻域的覆盖粗糙集实值属性约简[J]. J4, 2012, 47(1): 77-82.
[14] 林国平,李进金,陈锦坤. 覆盖广义粗糙集的一般化方法[J]. J4, 2012, 47(1): 83-86.
[15] 林梦雷1,杨伟萍2. 蕴涵区间直觉模糊粗糙集及其性质[J]. J4, 2011, 46(8): 104-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!