JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (6): 118-126.doi: 10.6040/j.issn.1671-9352.0.2018.146
LI Juan
CLC Number:
[1] ELDER K R, KATAKOWSKI M, HAATAJA M, et al. Modeling elasticity in crystal growth[J]. Phys Rev Lett, 2002, 88(24):245701. [2] ELDER K R, GRANT M. Modeling elastic and plastic deformations in nonequilbrium processing using phase field crystals[J]. Phys Rev E, 2004, 70(1):051605. [3] WISE S M, WANG Cheng, LOWENGRUB J S. An energy-stable and convergent finite-difference scheme for the phase field crystal equation[J]. SIAM J Numer Anal, 2009,47(3):2269-2288. [4] ] HU Zhengzheng, WISE S M, WANG Cheng, et al. Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation[J]. J Comput Phys, 2009, 228(15):5323-5339. [5] GOMEZ H, NOGUEIRA X. An unconditionally energy-stable method for the phase field crystal equation[J]. Comput Methods Appl Mech Engrg, 2012, 249/250/251/252:52-61. [6] ZHANG Zhengru, MA Yuan, QIAO Zhonghua. An adaptive time-stepping strategy for solving the phase field crystal model[J]. J Comput Phys, 2013, 249:204-215. [7] SHIN J, LEE H G, LEE J Y. First and second order numerical methods based on a new convex splitting for phase-field crystal equation[J]. J Comput Phys, 2016, 327:519-542. [8] CAO Haiyan, SUN Zhizhong. Two finite difference schemes for the phase field crystal equation[J]. Sci China Math, 2015, 58(11):2435-2454. [9] YANG Xiaofeng, HAN Daozhi. Linearly first-and second-order, unconditionally energy stable schemes for the phase field crystal model[J]. J Comput Phys, 2017, 330:1116-1134. [10] 李娟. 粘性Cahn-Hilliard方程的半线性Crank-Nicolson格式[J]. 四川师范大学学报(自然科学版), 2018, 41(2):237-245. LI Juan. On a semi-linearized Crank-Nicolson scheme for the viscous Cahn-Hilliard Equation[J]. Journal of Sichuan Normal University(Natural Science), 2018, 41(2):237-245. [11] 孙志忠. 偏微分方程数值解法[M]. 2版. 北京: 科学出版社, 2012: 13-16. SUN Zhizhong. The method to numerical solutions of partial differential equations[M]. 2nd ed. Beijing: Science Press, 2012: 13-16. [12] LI Juan, SUN Zhizhong, ZHAO Xuan. A three level linearized compact difference scheme for the Cahn-Hilliard equation[J]. Sci China Math, 2012, 55(4):805-826. [13] STEFANOVIC P, HAATAJA M, PROVATAS N. Phase-field crystals with elastic interactions[J]. Phys Rev Lett, 2006, 96(22):1-4. [14] STEFANOVIC P, HAATAJA M, PROVATAS N. Phase field crystal study of deformation and plasticity in nanocrystalline materials[J]. Phys Rev E, 2009, 80:046107. [15] WANG Cheng, WISE S M. An energy stable and convergent finite-difference scheme for the modified phase field crystal equation[J]. SIAM J Numer Anal, 2011, 49(3):945-969. [16] BASKARAN A, HU Zhengzheng, LOWENGRUB J S, et al. Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation[J]. J Comput Phys, 2013, 250:270-292. [17] GALENKO P K, GOMEZ H, KROPOTIN N V, et al. Unconditionally stable method and numerical solution of the hyperbolic phase-field crystal equation[J]. Phys Rev E, 2013, 88:013310. [18] BASKARAN A, LOWENGRUB J S, WANG Cheng, et al. Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation[J]. SIAM J Numer Anal, 2013, 51(5):2851-2873. [19] DEHGHAN M, MOHAMMADI V. The numerical simulation of the phase field crystal(PFC)and modified phase field crystal(MPFC)models via global and local meshless methods[J]. Comput Methods Appl Mech Engrg, 2016, 298:453-484. [20] LEE H G, SHIN J, LEE J Y. First-and second-order energy stable methods for the modified phase field crystal equation[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 321:1-17. |
[1] | YANG Yan-tao. Modified subgradient extragradient method for solving monotone variational inequality problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 38-45. |
[2] | ZHANG Tai-nian, LI Zhao-xing. Convergence analysis for inverse problems in a degenerate parabolic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 35-42. |
[3] | LIN Sui-hua. A modified FR spectral conjugate gradient method with Wolfe line search [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 6-12. |
[4] | ZHANG Ya-yun, WU Qun-ying. Precise asymptotics in the law of iterated logarithm for the moment convergence of ρ-mixing sequences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 13-20. |
[5] | HUANG Ai-ling, LIN Shuai. Finite dimensional approximation of linear stochastic Schrödinger equation in terms of localization of quantum Bernoulli noises [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 67-71. |
[6] | ZHENG Xiu-yun, SHI Jia-rong. A globally convergent conjugate gradient method with Armijo line search [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 98-101. |
[7] | DENG Xiao-qin, WU Qun-ying. Precise asymptotics in the complete moment convergence for NA random variables [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 102-110. |
[8] | WANG Yang, ZHAO Yan-jun, FENG Yi-fu. On successive-overrelaxation acceleration of MHSS iterations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 61-65. |
[9] | WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16-23. |
[10] | ZHANG Yu, XIAO Ben-qiong, XU Ke, SHEN Ai-ting. Complete moment convergence for arrays of rowwise NSD random variables [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 30-36. |
[11] | ZHANG Li-jun, GUO Ming-le. On complete moment convergence of weighted sums for arrays of rowwise asymptotically almost negatively associated random variables [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 42-49. |
[12] | YANG Xiao-fei. Characterization of L-fuzzifying topological spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 114-118. |
[13] | XU Yan-chao. Static output feedback robust H∞ control for continuous-time positive systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 87-94. |
[14] | ZHANG Hou-chao, ZHU Wei-jun, WANG Jun-jun. Superconvergence and extrapolation of a lower order mixed finite method for nonlinear fourth-order hyperbolic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 35-46. |
[15] | FAN Ming-zhi, WANG Fen-ling, SHI Dong-yang. High accuracy analysis of the lowest order new mixed finite element scheme for generalized nerve conductive equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 78-89. |
|