JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (11): 90-96.doi: 10.6040/j.issn.1671-9352.0.2018.532

Previous Articles     Next Articles

Open remote neighborhoods of topological systems and their applications

FENG Dan-dan, WU Hong-bo*   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Published:2019-11-06

Abstract: The concept of open remote neighborhood is proposed in topological system, and its properties with applications are studied. At first, the concept of open remote neighborhood is proposed in topological system, and its basic properties are discussed. Furthermore, a method of determining topological system is given by open remote neighborhood systems. The definition of continuous of mapping at a fixed point between topological systems is defined by open remote neighborhood systems, by which the equivalent form of continuous mapping between topological systems is given. At last, the equivalent forms of some separations of topological systems are given by using the open remote neighborhood systems.

Key words: topological system, open remote neighborhood, open remote neighborhood system, continuous mapping, T0 topological system, T1 topological system

CLC Number: 

  • O141.1
[1] VICKERS S. Topology via logic[M]. Cambridge: Cambridge University Press, 1989.
[2] ENGELKING R. General topology[M]. Warszawa: Panstwowe Wgdawnictwo Naukowe, 1977.
[3] 王国俊. L-fuzzy拓扑空间论[M]. 西安: 陕西师范大学出版社,1988. Wang Guojun. L-fuzzy topological spaces[M]. Xian: Shaanxi Normal University Press, 1988.
[4] WANG Guojun. Theory of topological molecular lattices[J]. Fuzzy Sets and Systems, 1992, 47:351-376.
[5] 王国俊. 拓扑分子格(1)[J]. 科学通报,1983(18):1089-1091. WANG Guojun.Topological molecular lattices(I)[J]. Science Bulletin,1983(18):1089-1091.
[6] 王国俊. 拓扑分子格(1)[J]. 陕西师大学报(自然科学版),1979(1):1-15. WANG Guojun.Topological molecular lattices(I)[J]. Journal of Shaanxi Normal University(Natural Science Edition), 1979(1):1-15.
[7] 王国俊. 广义拓扑分子格[J]. 中国科学(A辑),1983(12):1063-1072. WANG Guojun. Generalized topological molecular lattices[J]. Science in China(Ser A), 1983(12):1063-1072.
[8] 陈仪香. 拓扑系统范畴与子拓扑系统[J]. 陕西师大学报(自然科学版),1994,22(4):19-24. CHEN Yixiang. Category of topological systems and sub-topological systems[J]. Journal of Shaanxi Normal University(Natural Science Edition),1994, 22(4):19-24.
[9] 李世伦. 拓扑系统的分离性[J]. 四川大学学报(自然科学版),2002,39(4):644-648. LI Shilun. The separation of topological system[J]. Journal of Sichuan University(Natural Science Edition), 2002, 39(4):644-648.
[10] 刘菡, 贺伟. 拓扑系统的子系统[J]. 四川大学学报(自然科学版),2007,44(2):229-235. LIU Han, HE Wei. Subsystems of a topological system[J]. Journal of Sichuan University(Natural Science Edition), 2007, 44(2):229-235.
[11] 李高林, 徐罗山. 拓扑系统的紧性和分离性[J]. 模糊系统与数学,2007,21(2):6-13. LI Gaolin, XU Luoshan. Compactness and separation in topological systems[J]. Fuzzy Systems and Mathematics, 2007, 21(2):6-13.
[12] 梁基华. Locales上的收敛结构[J]. 数学学报,1995,38(3):294-301. LIANG Jihua. Convergence and cauchy structures on Locales[J]. Acta Mathematica Sinica, 1995, 38(3):294-301.
[13] 梁基华. 一致Locale的乘积[J]. 数学学报,1998,41(2):411-416. LIANG Jihua. The product of uniformity Locale[J]. Acta Mathematica Sinica, 1998, 41(2):411-416.
[14] 樊磊, 郑崇友. 连通Locale的基本性质[J]. 数学进展,2001,30(3):247-251. FAN Lei, ZHENG Chongyou. Basic properties of connected Locale[J]. Advances in Mathematics, 2001, 30(3):247-251.
[15] 郑崇友, 樊磊, 崔宏斌. Frame 与连续格[M]. 北京: 首都师范大学出版社,1994. ZHENG Chongyou, FAN Lei, CUI Hongbin. Introduction to frames and continous lattices[M]. Beijing: Capital Normal University Press, 1994.
[16] 熊金城. 点集拓扑讲义[M].4版. 北京: 高等教育出版社,2003. XIONG Jincheng. Lecture on point set topology[M]. 4thed. Beijing: Higher Education Press, 2003.
[1] LU Tao, HE Wei. Neighborhood systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 65-69.
[2] HE Xiao-li1, FU Wen-qing2. The local connectedness of  L-pretopological spaces: product and L-good extension [J]. J4, 2010, 45(10): 78-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CAO Hui-rong , ZHOU Wei, CHU Tong, ZHOU Jie. Dynamic analysis of Bertrand game model about taxation of government and subsidy[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(11): 52 -62 .
[2] ZHANG Ke-yong, LI Chun-xia, YAO Jian-ming, LI Jiang-xin. Decision-making and coordination of green supply chain with risk aversion under government subsidies[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(11): 35 -51 .
[3] ZHENG Jing-zhu, YANG Hai-ning, SU Ye, QIN Jing. A blindly public verifiable outsourcing scheme for matrix multiplication[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(11): 1 -11 .
[4] WU Zheng-xiang, LI Bao-ku. Equilibrium strategies of dual-channel supply chain considering the retailers social comparison behavior[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(11): 20 -34 .
[5] LU Zheng-yu, ZHOU Wei, YU Huan-huan, ZHAO Na. Dynamic analysis of game model considering advertising spillover effect[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(11): 63 -70 .
[6] LIU Shuang-gen, LI Dan-dan, LI Xiao. Elliptic curve scalar multiplication algorithm based on bronze ratio addition chain[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(11): 12 -19 .
[7] XIONG Xing-guo, LU Ling-xia. MV-algebra valued metric-based fuzzy rough sets[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(11): 81 -89 .