JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (7): 88-102, 110.doi: 10.6040/j.issn.1671-9352.0.2019.290

Previous Articles     Next Articles

Channel decisions and coordination of closed-loop supply chain under demand and cost disruptions

Dan-dan SUN(),Ke LI*(),Li-bin XIE,Zong-yu MU   

  1. School of Business, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2019-05-15 Online:2020-07-20 Published:2020-07-08
  • Contact: Ke LI E-mail:17854239588@163.com;605495315@qq.com

Abstract:

Considering demand and cost are disrupted by emergency events, there are three CLSC emergency models, i.e. retailer collecting, manufacturer collecting and third-party collecting. In the three decentralized collecting systems and centralized decision system, compared with equilibrium decisions in normal environment, when the disruptions of demand and cost are not large, sales quantity of products and collecting rate of used products have some robustness, but the wholesale price and selling price of products should be adjusted along the same direction with demand disruption; when the disruptions of demand and cost are large, the wholesale price, selling price, sales quantity of products and collecting rate of used products should be adjusted along the same direction with demand disruption; when the degree of demand decreasing and cost increasing are large, the three decentralized collecting systems and centralized decision system are all destroyed. In each case of demand and cost disruptions, manufacturer can obtain more profits by MRCRM system; when the degree of demand decreasing and cost increasing exceeds a certain threshold, the profits of centralized decision system decrease resulted from assuming more extra disposing costs, which results in its profits are less than MRCRM system. Furthermore, in other disruption cases, emergency revenue and expense sharing contract can solve "double marginalization" problems in MRCRM system, which improves system's operation efficiency and makes each member get Pareto improved profits.

Key words: closed-loop supply chain, demand, cost, channel choice, revenue and expense sharing contract

CLC Number: 

  • F272

Fig.1

Three types of recycling closed-loop supply chain systems"

Fig.2

Operation process of system under disturbance of emergencies"

Table 1

The parameters and notations"

符号 意义 符号 意义
cm 使用原材料生产新产品单位生产成本 β 市场上产品价格敏感系数
cr 使用废旧品生产再造品单位生产成本 q 产品的销售量(零售商的决策变量)
w 制造商给零售商产品单位批发价 A 回收商回收废旧品单位回收价
b 制造商从回收方处回收废旧品单位回收价(制造商的决策变量) τ 废旧品回收率, 0≤τ≤1
p 零售商处产品单位销售价(零售商的决策变量) CL 回收努力成本系数
ϕ 产品的最大市场需求规模 δ δ=cm-cr

Table 2

Comparison of three kinds of recovery system and centralized system in emergency decision and profit"

扰动区间 系统总利润 制造商利润
Δϕ>0, Δc<0 $ 0 \le \Delta \phi - \beta \Delta c < \frac{{4{C_{\rm{L}}}\left[ {\phi - \beta {c_{\rm{m}}} - \beta \left( {\delta - A} \right)} \right]\left( {\delta - A} \right)}}{{\left( {\delta - A} \right)}} + \beta {\lambda _2} $ $ {\mathit{\overline \Pi} ^{\rm{c}}} > \mathit{\overline \Pi} _{\rm{m}}^{\rm{R}} + \mathit{\overline \Pi} _{\rm{r}}^{\rm{R}} $ $ \mathit{\overline \Pi} _{\rm{m}}^{\rm{R}} > \mathit{\overline \Pi} _{\rm{m}}^{\rm{M}} > \mathit{\overline \Pi} _{\rm{m}}^{\rm{T}}$
Δϕ<0, Δc>0 $ \sqrt {6\beta {\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right)} - \left( {\phi - \beta {c_{\rm{m}}}} \right) - \beta {\lambda _1} < \Delta \phi - \beta \Delta c \le 0 $ $ {\mathit{\overline \Pi} ^{\rm{c}}} > \mathit{\overline \Pi} _{\rm{m}}^{\rm{R}} + \mathit{\overline \Pi} _{\rm{r}}^{\rm{R}} $
$ - \left( {\phi - \beta {c_{\rm{m}}}} \right) - \beta {\lambda _1} \le \Delta \phi - \beta \Delta c < \sqrt {6\beta {\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right)} - \left( {\phi - \beta {c_{\rm{m}}}} \right) - \beta {\lambda _1} $ $ {\mathit{\overline \Pi} ^{\rm{c}}} \le \mathit{\overline \Pi} _{\rm{m}}^{\rm{R}} + \mathit{\overline \Pi} _{\rm{r}}^{\rm{R}} $

Table 3

Emergency decision and profit comparison of three kinds of recovery system and centralized decision system"

扰动范围 (-(ϕ-βcm)-βλ1, -βλ1] (-βλ1, βλ2) $ \left[ {\beta {\lambda _2}, \frac{{4{C_{\rm{L}}}\left[ {\phi - \beta {c_{\rm{m}}} + \beta \left( {\delta - A} \right)} \right]\left( {\delta - A} \right)}}{{\left( {\delta - A} \right)}} + \beta {\lambda _2}} \right] $
价格 MRCRM $ {p^{{{\rm{R}}^*}}} + \frac{{\Delta \phi }}{\beta } - \frac{{{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ {p^{{{\rm{R}}^*}}} + \frac{{\Delta \phi }}{\beta } $ $ {p^{{{\rm{R}}^*}}} + \frac{{\Delta \phi }}{\beta } - \frac{{{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
MRCM $ {p^{{{\rm{M}}^*}}} + \frac{{\Delta \phi }}{\beta } - \frac{{2{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{\beta \left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ {p^{{{\rm{M}}^*}}} + \frac{{\Delta \phi }}{\beta } $ $ {p^{{{\rm{M}}^*}}} + \frac{{\Delta \phi }}{\beta } - \frac{{2{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{\beta \left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
MRCTM $ {p^{{{\rm{T}}^*}}} + \frac{{\Delta \phi }}{\beta } - \frac{{4{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{\beta \left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ {p^{{{\rm{T}}^*}}} + \frac{{\Delta \phi }}{\beta } $ $ {p^{{{\rm{T}}^*}}} + \frac{{\Delta \phi }}{\beta } - \frac{{4{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{\beta \left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
集中式 $ {p^{{{\rm{c}}^*}}} + \frac{{\Delta \phi }}{\beta } - \frac{{2{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ {p^{{{\rm{c}}^*}}} + \frac{{\Delta \phi }}{\beta } $ $ {p^{{{\rm{c}}^*}}} + \frac{{\Delta \phi }}{\beta } - \frac{{2{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{\beta \left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
产量 MRCRM $ {q^{{{\rm{R}}^*}}} + \frac{{{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $ qR* $ {q^{{{\rm{R}}^*}}} + \frac{{{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $
MRCM $ {q^{{{\rm{M}}^*}}} + \frac{{2{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $ qM* $ {q^{{{\rm{M}}^*}}} + \frac{{2{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $
MRCTM $ {q^{{{\rm{T}}^*}}} + \frac{{4{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $ qT* $ {q^{{{\rm{T}}^*}}} + \frac{{4{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $
集中式 $ {q^{{{\rm{c}}^*}}} + \frac{{2{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $ qc* $ {q^{{{\rm{c}}^*}}} + \frac{{2{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $
回收率 MRCRM $ {\tau ^{{{\rm{R}}^*}}} + \frac{{\left( {\delta - A} \right)\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{2\left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ τR* $ {\tau ^{{{\rm{R}}^*}}} + \frac{{\left( {\delta - A} \right)\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{2\left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
MRCM $ {\tau ^{{{\rm{M}}^*}}} + \frac{{\left( {\delta - A} \right)\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $ τM* $ {\tau ^{{{\rm{M}}^*}}} + \frac{{\left( {\delta - A} \right)\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $
MRCTM $ {\tau ^{{{\rm{T}}^*}}} + \frac{{\left( {\delta - A} \right)\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $ τT* $ {\tau ^{{{\rm{T}}^*}}} + \frac{{\left( {\delta - A} \right)\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $
集中式 $ {\tau ^{{{\rm{c}}^*}}} + \frac{{\left( {\delta - A} \right)\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $ τc* $ {\tau ^{{{\rm{c}}^*}}} + \frac{{\left( {\delta - A} \right)\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $
利润 MRCRM M $ \frac{{{C_{\rm{L}}}\left[ {{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2} - 2\beta {\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right)} \right]}}{{2\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}\left( {\phi - \beta {c_{\rm{m}}}} \right)\left[ {\phi - \beta {c_{\rm{m}}} + 2\left( {\Delta \phi - \beta \Delta c} \right)} \right]}}{{2\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}\left[ {{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}^2} - 2\beta {\lambda _2}\left( {\phi - \beta {c_{\rm{m}}}} \right)} \right]}}{{2\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
R $ \frac{{{C_{\rm{L}}}{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2}}}{{4\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}{{\left( {\phi - \beta {c_{\rm{m}}}} \right)}^2}}}{{4\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}^2}}}{{4\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
S $ \frac{{{C_{\rm{L}}}\left[ {3{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2} - 4\beta {\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right)} \right]}}{{4\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}\left( {\phi - \beta {c_{\rm{m}}}} \right)\left[ {3\left( {\phi - \beta {c_{\rm{m}}}} \right) + 4\left( {\Delta \phi - \beta \Delta c} \right)} \right]}}{{4\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}\left[ {3{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}^2} - 4\beta {\lambda _2}\left( {\phi - \beta {c_{\rm{m}}}} \right)} \right]}}{{4\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
MRCM M $ \frac{{{C_{\rm{L}}}\left[ {{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2} - 2\beta {\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right)} \right]}}{{\beta \left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}\left( {\phi - \beta {c_{\rm{m}}}} \right)\left[ {\phi - \beta {c_{\rm{m}}} + 2\left( {\Delta \phi - \beta \Delta c} \right)} \right]}}{{\beta \left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}\left[ {{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}^2} - 2\beta {\lambda _2}\left( {\phi - \beta {c_{\rm{m}}}} \right)} \right]}}{{\beta \left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
R $ \frac{{4C_{\rm{L}}^2{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2}}}{{\beta {{\left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $ $ \frac{{4C_{\rm{L}}^2{{\left( {\phi - \beta {c_{\rm{m}}}} \right)}^2}}}{{\beta {{\left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $ $ \frac{{4C_{\rm{L}}^2{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c - \beta {\lambda _2}} \right)}^2}}}{{\beta {{\left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $
S $ {C_{\rm{L}}}\left\{ \begin{array}{l} \frac{{{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2}\left[ {12{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}}{{\beta {{\left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}}\\ \;\;\;\;\;\;\;\frac{{2{\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right)}}{{8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} \end{array} \right\} $ $ {C_{\rm{L}}}\left( {\phi - \beta {c_{\rm{m}}}} \right)\left\{ \begin{array}{l} \frac{{\left( {\phi - \beta {c_{\rm{m}}}} \right)\left[ {12{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}}{{\beta {{\left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}}\\ \;\;\;\;\; + \frac{{2\left( {\Delta \phi - \beta \Delta c} \right)}}{{\beta \left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} \end{array} \right\} $ $ {C_{\rm{L}}}\left\{ \begin{array}{l} \frac{{{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}^2}\left[ {12{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}}{{\beta {{\left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}}\\ \;\;\;\; + \frac{{2{\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right)}}{{8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} \end{array} \right\} $
MRCTM M $ \frac{{2{C_{\rm{L}}}\left[ {{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2} - 2\beta {\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right)} \right]}}{{\beta \left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{2{C_{\rm{L}}}\left( {\phi - \beta {c_{\rm{m}}}} \right)\left[ {\phi - \beta {c_{\rm{m}}} + 2\left( {\Delta \phi - \beta \Delta c} \right)} \right]}}{{\beta \left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{2{C_{\rm{L}}}\left[ {{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}^2} - 2\beta {\lambda _2}\left( {\phi - \beta {c_{\rm{m}}}} \right)} \right]}}{{\beta \left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
R $ \frac{{16C_{\rm{L}}^2{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2}}}{{\beta {{\left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $ $ \frac{{16{C_{\rm{L}}}^2{{\left( {\phi - \beta {c_{\rm{m}}}} \right)}^2}}}{{\beta {{\left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $ $ \frac{{16C_{\rm{L}}^2{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c - \beta {\lambda _2}} \right)}^2}}}{{\beta {{\left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $
T $ \frac{{{C_{\rm{L}}}{{\left( {\delta - A} \right)}^2}{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2}}}{{{{\left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $ $ \frac{{{C_{\rm{L}}}{{\left( {\delta - A} \right)}^2}{{\left( {\phi - \beta {c_{\rm{m}}}} \right)}^2}}}{{{{\left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $ $ \frac{{{C_{\rm{L}}}{{\left( {\delta - A} \right)}^2}{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c - \beta {\lambda _2}} \right)}^2}}}{{{{\left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $
$ \frac{{{C_{\rm{L}}}}}{{\beta \left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}\left( {\phi - \beta {c_{\rm{m}}}} \right)}}{{\beta \left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}}}{{\beta \left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
S $ \left\{ \begin{array}{l} \frac{{\left[ {48{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2}}}{{16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}}\\ \;\;\;\;\; - 4\beta {\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right) \end{array} \right\} $ $ \left\{ \begin{array}{l} \frac{{\left[ {48{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]\left( {\phi - \beta {c_{\rm{m}}}} \right)}}{{16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}}\\ \;\;\;\;\; + 4\left( {\Delta \phi - \beta \Delta c} \right) \end{array} \right\} $ $ \left\{ \begin{array}{l} \frac{{\left[ {48{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}^2}}}{{16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}}\\ \;\;\;\;\; + 4\beta {\lambda _2}\left( {\phi - \beta {c_{\rm{m}}}} \right) \end{array} \right\} $
集中式 $ \frac{{{C_L}\left[ {{{\left( {\phi - \beta {c_m} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2} - 2\beta {\lambda _1}\left( {\phi - \beta {c_m}} \right)} \right]}}{{\beta \left[ {4{C_L} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_L}\left( {\phi - \beta {c_m}} \right)\left[ {\phi - \beta {c_m} + 2\left( {\Delta \phi - \beta \Delta c} \right)} \right]}}{{\beta \left[ {4{C_L} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_L}\left[ {{{\left( {\phi - \beta {c_m} + \Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}^2} - 2\beta {\lambda _2}\left( {\phi - \beta {c_m}} \right)} \right]}}{{\beta \left[ {4{C_L} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $

Table 4

Emergency equilibrium decision results of three kinds of recovery channel system and centralized decision system"

Δϕ-βΔc 回收模式 分散式决策 集中式决策
零售商 制造商 第三方 分散式总利润
${\bar p}$ ${\bar q}$ τ Πr ${\bar w}$ ${\bar b}$ Πm Πt Πd ${\bar p}$c ${\bar q}$c τc Πc
-20 MRCRM 6.748 5.036 0.072 5.036 5.000 1 1.259 6.295 6.496 10.072 0.144 2.518
MRCM 6.749 5.018 0.072 5.036 4.896 1.254 6.290
MRCTM 6.750 5.009 0.036 5.018 4.996 0.90 1.252 0.01 6.279
-7 MRCRM 7.639 8.309 0.119 13.710 5.900 1 18.608 32.318 6.078 16.619 0.237 37.216
MRCM 7.644 8.280 0.118 13.710 5.691 18.541 32.251
MRCTM 7.647 8.265 0.059 13.661 5.696 0.90 18.508 0.02 32.194
-5 MRCRM 7.837 8.813 0.126 15.423 6.194 1 22.032 37.455 6.075 17.626 0.252 44.065
MRCM 7.844 8.781 0.125 15.422 6.087 21.953 37.376
MRCTM 7.847 8.766 0.063 15.367 6.094 0.90 21.914 0.03 37.309
-2 MRCRM 8.037 8.813 0.126 15.423 6.300 1 27.320 42.743 6.275 17.626 0.252 54.640
MRCM 8.044 8.781 0.125 15.422 6.287 27.222 42.645
MRCTM 8.047 8.766 0.063 15.367 6.294 0.90 27.174 0.03 42.568
0 MRCRM 8.237 8.813 0.126 15.423 6.500 1 30.845 46.268 6.475 17.626 0.252 61.691
MRCM 8.244 8.781 0.125 15.422 6.487 30.735 46.157
MRCTM 8.247 8.766 0.063 15.367 6.494 0.90 30.680 0.03 46.075
2 MRCRM 8.437 8.813 0.126 15.423 6.700 1 34.371 49.793 6.675 17.626 0.252 68.741
MRCM 8.444 8.781 0.125 15.422 6.687 34.247 49.670
MRCTM 8.447 8.766 0.063 15, 367 6.694 0.90 34.186 0.03 49.581
5 MRCRM 8.837 8.813 0.126 15.423 7.100 1 39.658 55.081 7.075 17.626 0.252 79.317
MRCM 8.844 8.781 0.125 15.422 7.087 39.516 54.939
MRCTM 8.847 8.766 0.063 15, 367 7.094 0.90 39.445 0.03 54.840
20 MRCRM 9.727 12.590 0.180 31.475 8.000 1 71.763 103.240 6.453 25.180 0.360 143.520
MRCM 9.738 12.545 0.179 31.474 7.982 71.505 102.980
MRCTM 9.744 12.522 0.089 31.362 7.991 0.90 71.377 0.03 102.770
100 MRCRM 15.670 32.734 0.468 212.770 14.000 1 434.350 647.120 4.338 65.468 0.935 868.710
MRCM 15.710 32.616 0.466 212.760 13.950 432.790 645.560
MRCTM 15.730 32.558 0.233 212.980 13.980 0.90 432.020 0.04 644.410

Table 5

Results of a closed-loop supply chain coordinated by emergency revenue sharing contract"

Δϕ-βΔc θ范围 θ取值 w(θ) b(θ) $ \mathit{\overline \Pi} _{\rm{r}}^{\rm{d}} $ $ \mathit{\overline \Pi} _{\rm{m}}^{\rm{d}} $ $ \mathit{\overline \Pi} _{\rm{m}}^{\rm{d}} + \mathit{\overline \Pi} _{\rm{r}}^{\rm{d}} $
-7 (0.15, 0.5) 0.435 2.437 0.435 16.198 21.018 37.216
-5 (0.19, 0.5) 0.443 2.483 0.443 19.538 24.527 44.065
-2 (0.22, 0.5) 0.474 2.465 0.474 25.901 28.739 54.640
0 (0.25, 0.5) 0.282 1.409 0.282 17.381 44.310 61.691
2 (0.28, 0.5) 0.480 2.302 0.480 32.960 35.781 68.741
5 (0.35, 0.5) 0.369 1.698 0.369 29.272 50.045 79.317
20 (0.22, 0.5) 0.247 0.987 0.247 35.405 108.121 143.525
100 (0.25, 0.5) 0.491 0.982 0.491 426.572 442.133 868.705
1 SAVASKAN R C , BHATTACHARYA S , VAN WASSENHOVE L N . Closed-loop supply chain models with product remanufacturing[J]. Management Science, 2004, 50 (2): 239- 252.
doi: 10.1287/mnsc.1030.0186
2 SAVASKAN R C , VAN WASSENHOVE L N . Reverse channel design:the case of competing retailers[J]. Management Science, 2006, 52 (1): 1- 14.
3 ATASU A , TOKTAY L B , VAN WASSENHOVE L N . How collection cost structure drives a manufacturer's reverse channel choice[J]. Production and Operations Management, 2013, 22 (5): 1089- 1102.
4 舒秘, 聂佳佳. 产能约束对闭环供应链回收渠道选择的影响[J]. 运筹与管理, 2015, 24 (4): 52- 57.
SHU Mi , NIE Jiajia . Effect of capacity constraint on choice of collecting channels in closed-loop supply chain[J]. Operations Research and Management Science, 2015, 24 (4): 52- 57.
5 姚锋敏, 徐素波, 滕春贤. 双回收渠道下零售商主导闭环供应链决策模型[J]. 计算机集成制造系统, 2016, 22 (9): 2195- 2203.
YAO Fengmin , XU Subo , TENG Chunxian . Decision models for closed-loop supply chain with dominant retailer under dual recycle channels[J]. Computer Integrated Manufacturing Systems, 2016, 22 (9): 2195- 2203.
6 李晓静, 艾兴政, 唐小我. 竞争性供应链下再制造产品的回收渠道研究[J]. 管理工程学报, 2016, 30 (3): 90- 98.
LI Xiaojing , AI Xingzheng , TANG Xiaowo . Research on collecting strategies in the closed-loop supply chain with chain to chain competition[J]. Journal of Industrial Engineering and Engineering Management, 2016, 30 (3): 90- 98.
7 LIU L W , WANG Z J , XU L , et al. Collection effort and reverse channel choices in a closed-loop supply chain[J]. Journal of Cleaner Production, 2017, 144: 492- 500.
doi: 10.1016/j.jclepro.2016.12.126
8 卢荣花, 李南. 零售商竞争环境下两周期闭环供应链回收渠道选择研究[J]. 系统管理学报, 2017, 26 (6): 1143- 1150.
LU Ronghua , LI Nan . Take-back channel selection of a two-period closed-loop supply chain in retailer competing settings[J]. Journal of Systems & Management, 2017, 26 (6): 1143- 1150.
9 周雄伟, 熊花纬, 陈晓红. 基于回收产品质量水平的闭环供应链渠道选择模型[J]. 控制与决策, 2017, 32 (2): 193- 202.
ZHOU Xiongwei , XIONG Huawei , CHEN Xiaohong . Reverse channel selection in closed-loop supply chain based on quality of recycled products[J]. Control and Decision, 2017, 32 (2): 193- 202.
10 WANG W B , ZHOU S Y , ZHANG M , et al. A closed-loop supply chain with competitive dual collection channel under asymmetric information and reward-penalty mechanism[J]. Sustainability, 2018, 10 (7): 2131.
doi: 10.3390/su10072131
11 路应金, 徐雪砜, 艾兴政. 第三方规模效应下闭环供应链双渠道回收决策研究[J]. 管理工程学报, 2018, 32 (2): 207- 217.
LU Yingjin , XU Xuefeng , AI Xingzheng . Research on double-channel recycling decision of closed-loop supply chain under third-party scale effect[J]. Journal of Industrial Engineering and Engineering Management, 2018, 32 (2): 207- 217.
12 QI X T , BARD J F , YU G . Supply chain coordination with demand disruptions[J]. Omega, 2004, 32 (4): 301- 312.
doi: 10.1016/j.omega.2003.12.002
13 XU X L , SHANG J , WANG H Y , et al. Optimal production and inventory decisions under demand and production disruptions[J]. International Journal of Production Research, 2016, 54 (1): 287- 301.
doi: 10.1080/00207543.2015.1073402
14 CAO E B , ZHOU X S , LŸ K . Coordinating a supply chain under demand and cost disruptions[J]. International Journal of Production Research, 2015, 53 (12): 3735- 3752.
doi: 10.1080/00207543.2014.988885
15 刘浪, 史文强, 冯良清. 多因素扰动情景下应急数量弹性契约的供应链协调[J]. 中国管理科学, 2016, 24 (7): 163- 176.
LIU Lang , SHI Wenqiang , FENG Liangqing . Supply chain coordination of emergency quantity elastic contract under multi-factor disturbance[J]. Chinese Journal of Management Science, 2016, 24 (7): 163- 176.
16 于艳娜, 姚锋敏, 滕春贤. 需求与成本同时扰动下的信息产品供应链定价决策[J]. 计算机集成制造系统, 2018, 24 (2): 516- 523.
YU Yanna , YAO Fengmin , TENG Chunxian . Pricing decision for information products supply chain under demand and cost disruption[J]. Computer Integrated Manufacturing Systems, 2018, 24 (2): 516- 523.
17 徐浩, 李佳川. 成本和需求扰动时双渠道供应链的协调机制研究[J]. 预测, 2014, 33 (4): 70- 75.
XU Hao , LI Jiachuan . Research on coordination mechaisms of dual-channel supply chains when cost and demand are disrupted[J]. Forecasting, 2014, 33 (4): 70- 75.
18 TANG C H , YANG H L , CAO E B , et al. Channel competition and coordination of a dual-channel supply chain with demand and cost disruptions[J]. Applied Economics, 2018, 50 (46): 4999- 5016.
doi: 10.1080/00036846.2018.1466989
19 ZHANG P , XIONG Y , XIONG Z K . Coordination of a dual-channel supply chain after demand or production cost disruptions[J]. International Journal of Production Research, 2015, 53 (10): 3141- 3160.
doi: 10.1080/00207543.2014.975853
20 SOLEIMANI F , ARSHADI KHAMSEH A , NADERI B . Optimal decisions in a dual-channel supply chain under simultaneous demand and production cost disruptions[J]. Annals of Operations Research, 2016, 243 (1/2): 301- 321.
21 吴晓志, 陈宏, 张俊. 需求和成本同时扰动下零售商双渠道供应链协调研究[J]. 系统管理学报, 2017, 26 (6): 154- 160, 170.
WU Xiaozhi , CHEN Hong , ZHANG Jun . Coordinating a retailer's dual-channel supply chain under demand and production cost disruptions[J]. Journal of Systems & Management, 2017, 26 (6): 154- 160, 170.
22 韩小花, 吴海燕, 杨倩霞. 成本与需求同时扰动下竞争型闭环供应链的生产与协调决策[J]. 系统管理学报, 2016, 25 (3): 546- 555.
HAN Xiaohua , WU Haiyan , YANG Qianxia . Production and coordination decisions in the competitive closed-loop supply chain with cost and demand perturbations[J]. Journal of Systems & Management, 2016, 25 (3): 546- 555.
23 HAN X H , WU H Y , YANG Q X , et al. Collection channel and production decisions in a closed-loop supply chain with remanufacturing cost disruption[J]. International Journal of Production Research, 2017, 55 (4): 1147- 1167.
doi: 10.1080/00207543.2016.1230684
24 WU H Y , HAN X H , YANG Q X . Production and coordination decisions in a closed-loop supply chain with remanufacturing cost disruptions when retailers compete[J]. Journal of Intelligent Manufacturing, 2018, 29 (1): 227- 235.
25 HUANG Y T , WANG Z J . Demand disruptions, pricing and production decisions in a closed-loop supply chain with technology licensing[J]. Journal of Cleaner Production, 2018, 191: 248- 260.
doi: 10.1016/j.jclepro.2018.04.221
26 CACHON G P . Supply chain coordination with contracts[J]. Handbooks in Operations Research & Management Science, 2003, 11 (11): 227- 339.
[1] QU Peng-peng, ZHOU Yan. Equilibrium of a closed-loop supply chain network considering manufacturers fairness concern [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(5): 114-126.
[2] ZHANG Ke-yong, LI Chun-xia, YAO Jian-ming, LI Jiang-xin. Decision-making and coordination of green supply chain with risk aversion under government subsidies [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(11): 35-51.
[3] . Graph model based trustworthy resource scheduling algorithm in cloud environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(1): 63-74.
[4] HUANG Tian-yi, ZHU William. Cost-sensitive feature selection via manifold learning [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(3): 91-96.
[5] HUANG Wei-ting, ZHAO Hong, ZHU William. Adaptive divide and conquer algorithm for cost-sensitive attribute reduction [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 98-104.
[6] ZHANG Li-bo, LI Hua-xiong, ZHOU Xian-zhong, HUANG Bing. Multi-granularity cost-sensitive three-way decision for face recognition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 48-57.
[7] ZHOU Yan, SUN Hao, WANG Jing-jing, HAN Rui-jing, JIANG Jing-long. Multi-period closed-loop supply chain network equilibrium under uncertainty and the resulting demand satisfaction [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 38-49.
[8] WANG Ting1, CUI Yu-quan2, ZHAO Gang1. Coordination model with retailers’ competition based on stochastic demand and return mechanism [J]. J4, 2013, 48(6): 34-37.
[9] ZHANG Ke-yong1, WU Yan1, HOU Shi-wang2. Pricing strategy of considering retailer’s fairness concerns in  the closed-loop supply chain [J]. J4, 2013, 48(05): 83-91.
[10] XIONG De-guo, HU Yong-wen. A new method of solving the assignment problem based on the permissible-edge algorithm of minimum cost flow problem [J]. J4, 2012, 47(3): 103-109.
[11] XU Bing, XIONG Yong. Research on the decision models of supply chain network with n-2 structure and inventorydependent demand [J]. J4, 2012, 47(12): 14-21.
[12] LI Ling1, CHENG Guo-qing1, TANG Ying-hui2. Optimal inspection and replacement policy for a shock model with preventive repair [J]. J4, 2011, 46(9): 122-126.
[13] WANG Chuan-xu 1, JIANG Liang-kui2. Periodic ordering decisions in a supply chain with fuzzy random demand [J]. J4, 2011, 46(7): 48-55.
[14] XIONG Deguo1, HU Yongwen1, SHI Jianming2. A new algorithm for solving minimum cost flow with the duality principle [J]. J4, 2011, 46(6): 99-102.
[15] YUAN Bo, WANG Chuan-xu*. Research on the third part logistics company’s financing pricing under conditions of permissible delay in payments for random demands [J]. J4, 2010, 45(5): 58-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHOU Wei-na, ZUO Lian-cui*. A(d,1)-total labeling of Cartesian products of some classes of graphs#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 24 -28 .
[2] HUO Yu-hong, JI Quan-bao. Synchronization analysis of oscillatory activities in a biological cell system[J]. J4, 2010, 45(6): 105 -110 .
[3] ZHANG Xue-feng1, LIU Peng1,2. An improved K-means algorithm by weighted distance based on maximum between-cluster variation[J]. J4, 2010, 45(7): 28 -33 .
[4] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[5] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[6] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories[J]. J4, 2013, 48(2): 20 -22 .
[7] CHENG Zhi1,2, SUN Cui-fang2, WANG Ning1, DU Xian-neng1. On the fibre product of Zn and its property[J]. J4, 2013, 48(2): 15 -19 .
[8] ZHAO Tong-xin1, LIU Lin-de1*, ZHANG Li1, PAN Cheng-chen2, JIA Xing-jun1. Pollinators and pollen polymorphism of  Wisteria sinensis (Sims) Sweet[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 1 -5 .
[9] HUANG Xian-li,LUO Dong-mei. Feature impprtance study on  transfer learning of  sentiment  text  classification[J]. J4, 2010, 45(7): 13 -17 .
[10] CHENG Li-qing1,2, SHI Qiao-lian2. A new hybrid conjugate gradient method[J]. J4, 2010, 45(6): 81 -85 .