JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (11): 108-114.doi: 10.6040/j.issn.1671-9352.0.2019.513

Previous Articles     Next Articles

Representation of the number operator in continuous-time Guichardet-Fock space

  

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2019-11-06

Abstract: The paper considers the representation of the number operator N in continuous-time Guichardet-Fock space L2(Γ;η). Firstly, the gradient-Skorohod integral representation of N is given by using modified stochastic gradient SymbolQC@ and non-adaptive Skorohod integral δ:N=δSymbolQC@. Secondly, the representation of Bochner integral is given: N=∫R+SymbolQC@*sSymbolQC@sds in the sense of the inner product, by means of the family of isometric operator {SymbolQC@*sSymbolQC@s; s∈R+}. Meanwhile, the spectrum of N is just the nonnegative integral N, and for any n≥0, the closed subspace L2(n);η) of Guichardet-Fock space L2(Γ;η) is just the eigenspace corresponding to the eigenvalue n, and N has the spectrum representation: N=∑n=1nJn, where Jn:L2(Γ;η)→L2(n);η), is the orthogonal projection.

Key words: modified stochastic gradient SymbolQC@, point-state modified stochastic gradient SymbolQC@s, adjoint of the point state modified stochastic gradient SymbolQC@*s, Skorohod integral δ, number operator N

CLC Number: 

  • O211
[1] HUDSON R, PARTHASARATHE K R. Quantum Itôs formula and stochastic evolutions[J]. Communications in Mathematical Physics, 1984, 93(3):301-323.
[2] ASAO A. Dirac operators in Boson-Fermion Fock spaces and supersymmetric quantum field theory[J]. Journal of Geometry and Physics, 1993, 11(1/2/3/4):465-490.
[3] HUANG Zhiyuan. Quantum white noises-white noise approach to quantum stochastic calculus[J]. Nagoya Mathematical Journal, 1993, 129:23-42.
[4] 黄志远, 王才士, 让光林. 量子白噪声分析[M]. 武汉: 湖北科学出版社, 2004. HUANG Zhiyuan, WANG Caishi, RANG Guanglin. Quantum white noise analysis[M]. Wuhan: Hubei Science Press, 2004.
[5] OBATA N. White noise calculus and Fock space[M]. New York: Springer-Verlag, 1994.
[6] WANG Caishi, LU Yanchun, CHAI Huifang. An alternative approach to Privaults discrete-time chaotic calculus[J]. Journal of Mathematical Analysis and Applications, 2011, 373(2):643-654.
[7] WANG Caishi, CHAI Huifang, LU Yanchun. Discrete-time quantum bernoulli noises[J]. Journal of Applied Mathematics and Physics, 2010, 51(5):053528.
[8] WANG Caishi, CHEN Jinshu. Quantum Markov semigroups constructed form quantum bernoulli noises[J]. Journal of Mathematical Physics, 2016, 57(2):023502.
[9] WANG Caishi, CHEN Jinshu. Linear stochastic Schrödinger equations in terms of quantum bernoulli noises[J]. Journal of Mathematical Physics, 2017, 58(5):053510.
[10] ATTAL S, LINDSAY J M. Quantum stochastic calculus with maximal operator domains[J]. The Annals of Probability, 2004, 32(1):488-529.
[11] ZHANG Jihong, WANG Caishi, TIAN Lina. Localization of unbounded operators on Guichardet spaces[J]. Journal of Applied Mathematics and Physics, 2015, 3(7):792-796.
[12] 周玉兰, 李转. 连续时间Guichardet-Fock空间中修正随机梯度算子的性质[J]. 山东大学学报(理学版), 2018, 45(1):62-68. ZHOU Yulan, LI Zhuan. Properties of modified stochastic gradient operators in continuous-time Guichardet-Fock space[J]. Journal of Shandong University(Natural Science), 2018, 45(1):62-68.
[1] CHEN Hao-jun, ZHENG Ying, MA Ming, BIAN Li-na, LIU Hua. Covariance of self-exciting filtered Poisson process [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 75-79.
[2] ZHOU Yu-lan, LI Zhuan, LI Xiao-hui. Properties of modified stochastic gradient operators in continuous-time Guichardet-Fock space [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 62-68.
[3] LI Yong-ming, NIE Cai-ling, LIU Chao, GUO Jian-hua. Consistency of estimator of nonparametric regression function for arrays of rowwise NSD [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 69-74.
[4] MA Ming, BIAN Li-na, LIU Hua. Low order moments of self-excited filtered Poisson processes based on joint distribution of event points [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 55-58.
[5] XIAO Xin-ling. Forward-backward stochastic differential equations on Markov chains [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 46-54.
[6] CHEN Li, LIN Ling. Stock option pricing with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 36-41.
[7] ZHANG Ya-juan, LYU Yan. Approximation of stochastic vibration equations with variable damping [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 59-65.
[8] LI Xiao-juan, GAO Qiang. Regularity for product space under sublinear expectation framework [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 66-75.
[9] CUI Jing, LIANG Qiu-ju. Existence and controllability of nonlocal stochastcic integro-differential equations driven by fractional Brownian motion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 81-88.
[10] HUANG Ai-ling, LIN Shuai. Finite dimensional approximation of linear stochastic Schrödinger equation in terms of localization of quantum Bernoulli noises [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 67-71.
[11] RONG Wen-ping, CUI Jing. μ-pseudo almost automorphic solutions for a class of stochastic evolution equations under non-Lipschitz conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 64-71.
[12] FENG De-cheng, ZHANG Xiao, ZHOU Lin. A class of minimal inequalities for demimartingales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 65-69.
[13] ZHANG Jie-song. Diffusion approximation and optimal investment for modern risk model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(5): 49-57.
[14] YANG Xu, LI Shuo. Comparison theorem for backward doubly stochastic differential equations driven by white noises and Poisson random measures [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 26-29.
[15] ZHANG Ya-yun, WU Qun-ying. Precise asymptotics in the law of iterated logarithm for the moment convergence of ρ-mixing sequences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 13-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!