JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (6): 48-55.doi: 10.6040/j.issn.1671-9352.0.2019.785

Previous Articles    

Existence of solutions for fractional Kirchhoff-type equation with variable exponent

ZHANG Shen-gui   

  1. College of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030, Gansu, China
  • Published:2020-06-01

Abstract: This paper studies a class of Dirichlet boundary value problem for fractional Kirchhoff-type equation with variable exponent. When the nonlinear term is p+-superlinear at infinity, some sufficient condition for the existence of infinitely many solutions is established by employing the critical point theory, variational methods and the theory of fractional variable exponent space.

Key words: Kirchhoff-type equation, fractional equation, variable exponent, critical point

CLC Number: 

  • O175.8
[1] BISCI G, RADULESCU D, SERVADI R. Variational methods for nonlocal fractional problems[M]. Cambridge: Cambridge University Press, 2016.
[2] SERVADEL R, VALDINOCI E. Mountain pass solutions for non-local elliptic operators[J]. Journal of Mathematical Analysis and Applications, 2012, 389(2):887-898.
[3] XIANG Mingqi, ZHANG Binlin, GUO Xiuying. Infinitely many solutions for a fractional Kirchhoff type problem via fountain theorem[J]. Nonlinear Analysis, 2015, 120(1):299-313.
[4] ZHIKOV V. On some variational problems[J]. Russian J Math Phys, 1997, 11(5):105-116.
[5] CHEN Y, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM Journal Application Mathematics, 2006, 66(4):1383-1406.
[6] KARAMA F, SADIK K, ZIAD L. A variable exponent nonlocal p(x)-Laplacian equation for image restoration[J]. Comput Math Appl, 2018, 75(2):534-546.
[7] BAHROUNI A, RADULESCU D. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent[J]. Discrete and Continuous Dynamical Systems, Series S, 2018, 11(3):1-17.
[8] KAUFMANN U, ROSSI J, VIDAL R. Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2017, 76(1):1-10.
[9] BAHROUNI A. Comparison and sub-supersolution principles for the fractional p(x)-Laplacian[J]. Journal of Mathematical Analysisand Applications, 2018, 112(3):299-313.
[10] AZROUL E, BENKIRANE A, SHIMI M. Eigenvalue problems involving the fractional p(x)-Laplacian operator[J]. Advances in Operator Theory, 2019, 4(2):539-555.
[11] 张申贵. 一类变指数分数阶微分方程的多重解[J]. 吉林大学学报(理学版), 2018, 56(6):1324-1330. ZHANG Shengui. Multiple solutions for a class of fractional differential equation with variable exponents[J]. Journal of Jilin University(Science Edition), 2018, 56(6):1324-1330.
[12] 顾光泽, 吴鲜, 余渊洋, 等. R3上分数阶Kirchhoff方程正解的多重性及集中性[J].中国科学: 数学, 2019, 49(1):39-72. GU Guangze, WU Xian, YU Yuanyang, et al. Multiplicity and concentration behavior of positive solutions for a fractional Kirchhoff equation in R3[J]. Scientia Sinica Mathematica, 2019, 49(1):39-72.
[13] FISCELLA A, VALDINOCI E. A critical Kirchhoff type problem involving a nonlocal operator[J]. Nonlinear Analysis: Theory Methods Applications, 2014, 94(1):156-170.
[14] WILLEM M. Minimax Theorems[M]. Boston: Birkhauser, 1996.
[1] ZHANG Shen-gui. Applications of variational method to impulsive differential systems with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 22-28.
[2] FANG Xiao-zhen, SUN Ai-wen, WANG Min, SHU Li-sheng. Boundedness of generalized multilinear operators on variable exponent spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 6-16.
[3] WU Yi-jia, CHENG Rong. Infinitely many nontrival solutions for a class of Schrödinger equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(2): 84-88.
[4] WANG Ying-mei, WANG Zhen-dong, LI Gong-sheng. An image restoration algorithm based on variable exponential fractional order total variation and integer order total variation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(11): 115-126.
[5] ZHANG Shen-gui. Periodic solutions for a class of Kirchhoff-type differential systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 1-6.
[6] XIN Yin-ping, TAO Shuang-ping. Boundedness of Marcinkiewicz integrals operators with variable kernels on Herz-type Hardy spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 38-43.
[7] ZHANG Shen-gui. Multiple solutions of Navier boundary value problem for fourth-order elliptic equation with variable exponents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 32-37.
[8] ZHAO Huan, ZHOU Jiang. Commutators of multilinear Calderón-Zygmund operator on Herz-type Hardy spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 42-50.
[9] LU Qiang-de, TAO Shuang-ping. Boundedness of commutators of Calderón-Zygmund operators and fractional integrals in homogeneous grand variable exponent Lebesgue spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 54-58.
[10] MA Xiao-jie, ZHAO Kai. Boundedness of commutators of the fractional Hardy operators on weighted spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 106-110.
[11] JIANG Jing, GAO Qing-ling, ZHANG Ke-yu. Existence of weak solutions for a second order Dirichlet boundary value problem on time scales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 99-103.
[12] WANG Jie, QU Meng, SHU Li-sheng. Boundedness of the Littlewood-Paley operators and cummutators on the Herz spaces with variable exponents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 9-18.
[13] WANG Jin-ping, ZHAO Kai. Lipschitz commutators of fractional integrals on Herz-type spaces with variable exponents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 6-10.
[14] ZHANG Shen-gui. Multiplicity of solutions for Kirchhoff type equation involving the p(x)-biharnonic operator [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 48-53.
[15] SUN Guo-wei, MAI A-li. Multiple homoclinic solutions for second order nonlinear difference equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 51-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!