JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (1): 10-17.doi: 10.6040/j.issn.1671-9352.0.2020.429

Previous Articles    

(m,n)-Cotorson modules and (m,n)-flat modules

WANG Xi1, SHEN Lei2, LUO Xiao-qiang1   

  1. 1. College of Mathematics, Sichuan University of Arts and Science, Dazhou 635000, Sichuan, China;
    2. Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu, China
  • Published:2021-01-05

Abstract: Let R be a ring, m and n be two fixed non-negative integers. A right R-module C is called (m,n)-cotorsion if Extm+1R(N,C)=0 for any right R-module with fdRN≤n. M is called (m,n)-flat if Ext1R(M,C)=0 for any (m,n)-cotorsion right R-modules C. We prove that(F mn,C mn )is a complete hereditary cotorsion pair, where F mn, C mn denotes the class of all (m,n)-flat and (m,n)-cotorsion right R-modules respectively. Whats more, R is said to (m,n)-perfectring if all R-modules are (m,n)-cotorsion. Some properties are given.

Key words: (m,n)-cotorsion module, (m,n)-flat module, (m,n)-perfect ring

CLC Number: 

  • O154
[1] WANG Fanggui, KIM H K. Foundations of commutative rings and their modules[M]. Singapore: Springer, 2016.
[2] MAO Lixin, DING Nanqing. Relative cotorsion modules and relative flat modules[J]. Communications in Algebra, 2006, 34(6):2303-2317.
[3] MAO Lixin, DING Nanqing. Envelopes and covers by modules of finite FP-injective and flat dimensions[J]. Communications in Algebra, 2007, 35:833-849.
[4] MAO Lixin, DING Nanqing. Relative copure injective and copure flat modules[J]. Journal of Pure and Applied Algebra, 2007, 208(2):635-646.
[5] MAO Lixin, DING Nanqing. Notes on cotorsion modules[J]. Communicationgs in Algebra, 2005, 33(1):349-360.
[6] XU Jinzhong. Flat cover of modules[M]. Lecture Notes in Math, 1634. Berlin: Springer, 1996.
[7] ENOCHS E E, JENDA O M G, LÓPEZ-RAMOS J A. Dualizing modules and n-perfect rings[J]. Proceedings of the Edinburgh Mathematical Society, 2005, 48(1):75-90.
[8] JHILAL A, MAHDOU N. On strong n-perfect rings[J]. Communications in Algebra, 2010, 38(3).
[9] JHILAL A, MAHDOU N. On (n,d)-perfect rings[J]. Mathematics, 2008: 275-282.
[10] JENSEN C U. On the vanishing of lim_←(i)[J]. Journal of Algebra, 1970, 15(2):151-166.
[11] ROTMAN J J. An introduction to homological algebra[M]. London: Academic Press, 1979.
[12] BENNIS D, MAHDOU N. On n-perfect rings and cotorsion dimension[J]. Journal of Algebra and Its Applications, 2009, 8(2):181-190.
[1] ZHAO Tiao, ZHANG Chao. q-Cartan matrices of self-injective Nakayama algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 46-51.
[2] GUO Shou-tao, WANG Zhan-ping. Gorenstein homological dimensions of modules under exact zero-divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 17-21.
[3] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[4] CHEN Wen-qian, ZHANG Xiao-jin, ZAN Li-bo. The number of tilting modules over Gorenstein algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 14-16.
[5] . FR-injective and FR-flat dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 1-6.
[6] CHEN Dong, WANG Fang-gui, JIAN Hong, CHEN Ming-zhao. Structure of modules over 2-strongly Gorenstein semisimple ring with its application [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 24-30.
[7] YANG Chun-hua. A note on the Gc-injective dimension of a complex [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 82-86.
[8] LUO Xiao-qiang, XING Jian-min. Ding gr-injective and gr-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 87-91.
[9] WANG Xiao-qing, LIANG Li. Strongly cotorsion modules under faithfully flat co-base change [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 92-94.
[10] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
[11] XU Hui, ZHAO Zhi-bing. Relative torsionless modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 75-80.
[12] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[13] YU Xiao-lan. Global dimensions of cocycle deformations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 39-43.
[14] SUN Wei-kun, LIN Han-xing. Representation dimension of one-point extension algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 85-91.
[15] LIU Ni, ZHANG Miao-miao. Continuous directed-complete ordered semigroups and their categorical properties [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 57-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!