JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (4): 94-101.doi: 10.6040/j.issn.1671-9352.0.2020.494

Previous Articles    

Commutative properties of generalized number operators

ZHOU Yu-lan, XUE Rui, CHENG Xiu-qiang, CHEN Jia   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2021-04-13

Abstract: This paper considers the commutative ralations of the generalized number operator Nh and the quantum Bernoulli noise σ*σ:σ∈Γ} indexed by Γ, such as Lie bracket, the expressions of the composition of Nh and əσ*σ), the commutative relation of Nh and əσə*σ*σəσ). The family of bounded linear operators σ*σ:σ∈Γ} on L2(M) satisfies the canonical anticommutative relation, nilpotence and the composition are commutative if the intersection of the index is empty. Especially, σ*σ:σ∈Γ} satisfy “absorbing commutative relation”. In the following, the paper considers the commutative relations of Nh and {əσ*σ:σ∈Γ}. For any nonnegative function h on N, the Lie bracket of Nh and the σ-creation ə*σ-annihilation əσ)are just #h(σ)ə*σ(#h(σ)əσ). Especially, if the support of h is not N, then Nh is commutative with some special kind of ə*σσ). If the support of h is a finite subset of N, the composition of Nh and a special kind of ə*σσ) are just the creation type(annihilation type)operators. Moreover, the paper obtains that Nh is commutative with σə*σ*σəσ:σ∈Γ}.

Key words: generalized number operator Nh, quantum Bernoulli noise indexed by Γ, commutative ralation

CLC Number: 

  • O211
[1] HUDSON R, PARTHASARATHE K R. Quantum Itôs formula and stochastic evolutions[J]. Communications in Mathematical Physics, 1984, 93(3):301-323.
[2] PARTHASARATHE K R. An introduction to quantum stochastic calculus[M]. Basel: Birkhauser, 1992.
[3] WANG Caishi, LU Yanchun, CHAI Huifang. An aiternative approach to Privaults discrete-time chaotic calculus[J]. Journal of Msthematical Analysis and Applications, 2011, 373(2):643-654.
[4] WANG Caishi, CHAI Huifang, LU Yanchun. Discrete-time quantum Bernoulli noises[J]. Journal of Mathematical Physics, 2010, 51(5):053528.
[5] WANG Caishi, CHEN Jinshu. Characterization theorems for generalized functionals of discrete-time normal martingale[J/OL]. Journal of Function Spaces, 2015[2020-08-13]. http://dx.doi.org/10.1155/2015/714745.
[6] WANG Caishi, CHEN Jinshu. A characterization of operators on functionals of discrete-time normal martingales[J]. Stochastic Analysis and Applications, 2017, 35(2):305-316.
[7] WANG Caishi, CHEN Jinshu. Convergence theorems for generalized functionals sequences of discrete-time normal martingale[J/OL]. Journal of Function space, 2015[2020-08-13]. http://dx.doi.org/10.1155/2015/360679.
[8] WANG Caishi, ZHANG Jihong. Wick analysis for Bernoulli noise functionals[J/OL]. Journal of Function Spaces, 2014[2020-08-13]. http://dx.doi.org/10.1155/2014/727341.
[9] HAN Qi, WANG Caishi, ZHOU Yulan. Convolution of functionals of discrete-time normal martingale[J]. Bulletin of the Australian Mathematical Society, 2012, 86(2):224-231.
[10] 周玉兰,李转,李晓慧.连续时间Guichardet-Fock空间中修正随机梯度算子的性质[J]. 山东大学学报(理学版),2018,53(12):62-68. ZHOU Yulan, LI Zhuan, LI Xiaohui. Properties of modified stochastic gradient operators in continuous-time Guichardet-Fock space[J]. Journal of Shandong University(Natural Science), 2018, 53(12):62-68.
[11] 周玉兰,李晓慧,程秀强,等. 连续时间Guichardet-Fock空间中的计数算子的表示[J].山东大学学报(理学版),2019,54(11):108-114. ZHOU Yulan, LI Xiaohui, CHENG Xiuqiang, et al. Representation of the number operator in continuous-time Guichardet-Fock space[J]. Journal of Shangdong University(Natural Science), 2019, 54(11):108-114.
[12] 周玉兰,程秀强,薛蕊,等.广义修正随机梯度与广义Skorohod 积分[J].吉林大学学报(理学版),2020,58(3):479-485. ZHOU Yulan, CHENG Xiuqiang, XUE Rui, et al. Generalized modified stochastic gradient and generalized skorohod integral[J]. Journal of Jilin University(Natural Science), 2020, 58(3):479-485.
[1] ZHOU Yu-lan, LI Zhuan, LI Xiao-hui. Properties of modified stochastic gradient operators in continuous-time Guichardet-Fock space [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 62-68.
[2] LI Yong-ming, NIE Cai-ling, LIU Chao, GUO Jian-hua. Consistency of estimator of nonparametric regression function for arrays of rowwise NSD [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 69-74.
[3] CHEN Hao-jun, ZHENG Ying, MA Ming, BIAN Li-na, LIU Hua. Covariance of self-exciting filtered Poisson process [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 75-79.
[4] LI Xiao-juan, GAO Qiang. Regularity for product space under sublinear expectation framework [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 66-75.
[5] MA Ming, BIAN Li-na, LIU Hua. Low order moments of self-excited filtered Poisson processes based on joint distribution of event points [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 55-58.
[6] XIAO Xin-ling. Forward-backward stochastic differential equations on Markov chains [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 46-54.
[7] CHEN Li, LIN Ling. Stock option pricing with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 36-41.
[8] ZHANG Ya-juan, LYU Yan. Approximation of stochastic vibration equations with variable damping [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 59-65.
[9] HUANG Ai-ling, LIN Shuai. Finite dimensional approximation of linear stochastic Schrödinger equation in terms of localization of quantum Bernoulli noises [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 67-71.
[10] CUI Jing, LIANG Qiu-ju. Existence and controllability of nonlocal stochastcic integro-differential equations driven by fractional Brownian motion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 81-88.
[11] RONG Wen-ping, CUI Jing. μ-pseudo almost automorphic solutions for a class of stochastic evolution equations under non-Lipschitz conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 64-71.
[12] FENG De-cheng, ZHANG Xiao, ZHOU Lin. A class of minimal inequalities for demimartingales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 65-69.
[13] ZHANG Jie-song. Diffusion approximation and optimal investment for modern risk model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(5): 49-57.
[14] YANG Xu, LI Shuo. Comparison theorem for backward doubly stochastic differential equations driven by white noises and Poisson random measures [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 26-29.
[15] ZHANG Ya-yun, WU Qun-ying. Precise asymptotics in the law of iterated logarithm for the moment convergence of ρ-mixing sequences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 13-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!