JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (1): 1-9.doi: 10.6040/j.issn.1671-9352.0.2020.570

   

Tate cohomology over T2-extension algebras

TAN Ling-ling1, HUANG Yun-tao2, ZHAO Ti-wei1*   

  1. 1. School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China;
    2. Department of Applied Mathematics, College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
  • Published:2021-01-05

Abstract: The intrinsic connections between Tate cohomology of modules over an algebra and that of modules over its T2-extension are investigated.

Key words: Tate cohomology, Gorenstein cohomology, T2-extension

CLC Number: 

  • O154.2
[1] ENOCHS E E, JENDA O M G. Relative homological algebra[M] //De Gruyter Exp Math, Vol 30. Berlin: Walter de Gruyter Co, 2000.
[2] HOLM H. Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2004, 189:167-193.
[3] TATE J. The higher dimensional cohomology groups of class field theory[J]. Ann Math, 1952, 56:294-297.
[4] AVRAMOV L L, MARTSINKOVSKY A. Absolute, relative, and tate cohomology of modules of finite Gorenstein dimension[J]. Proc London Math Soc, 2002, 85:393-440.
[5] IACOB A. Generalized tate cohomology[J]. Tsukuba J Math, 2005, 29:389-404.
[6] VELICHE O. Gorenstein projective dimension for complexes[J]. Trans Am Math Soc, 2006, 358:1257-1283.
[7] CHRISTENSEN L W, JORGENSEN D A. Tate(co)homology via pinched complexes[J]. Trans Am Math Soc, 2014, 366(2):667-689.
[8] ASADOLLAHI J, SALARIAN S. Tate cohomology and Gorensteinness for triangulated categories[J]. J Algebra, 2006, 299:480-502.
[9] LI Z W, ZHANG P. A construction of Gorenstein-projective modules[J]. J Algebra, 2010, 323:1802-1812.
[10] LUO X H, ZHANG P. Monic representations and Gorenstein-projective modules[J]. Pacific J Math, 2013, 264:163-194.
[11] AUSLANDER M. Representation dimension of Artin algebras[M] //Queen Mary College Mathematics Notes. London: Queen Mary College, 1971.
[12] YIN H B, ZHANG S H. Representation dimensions of triangular matrix algebras[J]. Linear Algebra Appl, 2013, 438:2004-2017.
[13] AUSLANDER M, REITEN I, SMALΦ S O. Representation theory of Artin algebra[M] //Cambridge Stud Adv Math, Vol 36. Cambridge: Cambridge Univ Press, 1995.
[14] CHEN X W. Gorenstein homological algebra of Artin algebras[J/OL].(2017-12-13). arXiv: 1712.04587.
[1] ZHAO Tiao, ZHANG Chao. q-Cartan matrices of self-injective Nakayama algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 46-51.
[2] CHEN Wen-qian, ZHANG Xiao-jin, ZAN Li-bo. The number of tilting modules over Gorenstein algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 14-16.
[3] GUO Shou-tao, WANG Zhan-ping. Gorenstein homological dimensions of modules under exact zero-divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 17-21.
[4] . FR-injective and FR-flat dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 1-6.
[5] LUO Xiao-qiang, XING Jian-min. Ding gr-injective and gr-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 87-91.
[6] WANG Xiao-qing, LIANG Li. Strongly cotorsion modules under faithfully flat co-base change [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 92-94.
[7] YANG Chun-hua. A note on the Gc-injective dimension of a complex [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 82-86.
[8] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[9] XU Hui, ZHAO Zhi-bing. Relative torsionless modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 75-80.
[10] SUN Wei-kun, LIN Han-xing. Representation dimension of one-point extension algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 85-91.
[11] XIE Zong-zhen, ZHANG Xiao-jin. On algebras with all τ-rigid modules projective [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 16-20.
[12] CHENG Hai-xia, YIN Xiao-bin. Gorenstein injective objects in Abelian categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 79-84.
[13] CHEN Xiu-li, CHEN Jian-long. Copure projective dimensions under Hopf extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 7-10.
[14] PAN Xiao-ling, LIANG Li. Tate homology of modules of finite Gorenstein flat dimension with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 102-105.
[15] ZHANG Li-ying, YANG Gang. Cartan-Eilenberg Gorenstein AC-cohomology dimension of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 77-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!