JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (10): 88-91.doi: 10.6040/j.issn.1671-9352.0.2021.455

Previous Articles    

A class of maximal inequalities for the functions of demimartingales and N-demimartingales

LU Ya-li, FENG De-cheng*, LIN Xia   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2022-10-06

Abstract: A class of maximal inequalities for the functions of demartingales and N-demimartingales were given by using upcrossing inequality for demimartingales, downcrossing inequality for N-demimartingales and their maximal inequalities.

Key words: demimartingale, N-demimartingale, convex function, concave function, maximal inequalitiy

CLC Number: 

  • O211.4
[1] ESARY J D, PROSCHAN F, WALKUP D. Association of random variables with applications[J]. The Annals of Mathematical Statistics, 1967, 38(5):1466-1474.
[2] JOAG-DEV K, PROCHAN F. Negative association of random variables with applications[J]. The Annals of Statistics, 1983, 11(1):286-295.
[3] NEWMAN C M, WRIGHT A L. Associated random variables and martingale inequalities[J]. Zeitschrift Für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1982, 59(3):361-371.
[4] CHRISTOFIDES T C. Maximal inequalities for N-demimartingales[J]. Archives of Inequalities Applications, 2003, 50(1):387-397.
[5] PRAKASA RAO B L S. On some maximal inequalities for demisubmartingales and N-demisubmartingales[J]. Journal of Inequalities in Pure & Applied Mathematics, 2007, 8(4):112.
[6] HADJIKYRIAKOU M. Probability and moment inequalities for demimartingales and associated random variables[D]. Nicosia: University of Cyprus, 2010.
[7] CHRISTOFIDES T C. Maximal inequalities for demimartingales and a strong law of large numbers[J]. Statistics & Probability Letters, 2000, 50(4):357-363.
[8] CHRISTOFIDES T C, HADJIKYRIAKOU M. Maximal and moment inequalities for demimartingales and N-demimartingales[J]. Statistics & Probability Letters, 2012, 82(3):683-691.
[1] FENG De-cheng, LIN Xia, LU Ya-li. A class of maximal inequalities for demimartingales(demisubmartingales)based on concave Young functions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(11): 93-96.
[2] FENG De-cheng, ZHANG Xiao, ZHOU Lin. A class of minimal inequalities for demimartingales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 65-69.
[3] FENG De-cheng, WANG Xiao-yan, GAO Yu-feng. Maximal φ-inequalities for conditional N-demimartingales based on Y functions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 91-96.
[4] LU Wei, SONG Xiao-qiu, HUANG Lei-lei. Inequalities of Hermite-Hadamard and Sandaor for fuzzy integral [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 22-28.
[5] WANG Li-mei. The univalency of nonlinear transformations of close-to-convex functions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 64-66.
[6] GONG Xiao-bing1,2. Whittle type inequality for demimartingales and its applications [J]. J4, 2011, 46(9): 112-116.
[7] SONG Li1,2. Jensen′s inequality for sub-linear expectations [J]. J4, 2011, 46(3): 109-111.
[8] SUN Tao1, GAO Fei1, DUAN Xiao-dong2. The existence of positive solutions of nonlocal boundary  value problems for the fourth order [J]. J4, 2010, 45(12): 62-66.
[9]

WANG Wei

. Properties of Gconvex function under the framework of Gexpectations [J]. J4, 2009, 44(4): 43-46 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!