-
n-Gorenstein projective modules over formal triangular matrix rings
- NIU Shao-hua, YANG Gang
-
JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE). 2022, 57(10):
44-49.
doi:10.6040/j.issn.1671-9352.0.2021.723
-
Abstract
(
394 )
PDF (440KB)
(
420
)
Save
-
References |
Related Articles |
Metrics
Let n be an integer, T=(A 0U B) a formal triangular matrix ring, where A and B are rings and U is a (B,A)-bimodule, BU is projective, UA has finite flat dimension. It is proved that, if a left T-module (M1M2)φM is n-Gorenstein projective, then M1 is (n-1)-Gorenstein projective in A-Mod, M2/Im(φM)is n-Gorenstein projective in B-Mod, and φM:U⊗AM1→M2 is a monomorphism. Conversely, if M1 is n-Gorenstein projective in A-Mod, M2/Im(φM) is n-Gorenstein projective in B-Mod, and φM:U⊗AM1→M2 is a monomorphism, then the left T-module (M1M2)φM is n-Gorenstein projective.