JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (10): 16-20.doi: 10.6040/j.issn.1671-9352.0.2021.802

Previous Articles    

Property and structure of rectangular Clifford bi-semirings

WEI Meng-jun, LI Gang*   

  1. School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, Shandong, China
  • Published:2022-10-06

CLC Number: 

  • O152.7
[1] 张娟娟,李映辉,赵宪钟. 矩形Clifford半环的性质与结构[J]. 云南大学学报(自然科学版), 2008, 30(4):338-343. ZHANG Juanjuan, LI Yinghui, ZHAO Xianzhong. The property and structure of rectangular Clifford semiring[J]. Journal of Yunnan University(Natural Science Edition), 2008, 30(4):338-343.
[2] GUO Yuqi, SHUM K P, SEN M K. The semigroup structure of left Clifford semirings[J]. Acta Mathematics Sinica: English Series, 2003, 19(4):783-792.
[3] 魏孟君,李刚. 左Clifford双半环的性质与结构[J]. 山东大学学报(理学版), 2021, 56(8):45-48. WEI Mengjun, LI Gang. The property and structure of left Clifford bi-semirings[J]. Journal of Shandong University(Natural Science), 2021, 56(8):45-48.
[4] PETRICH M, REILLY N R. Completely regular semigroups[M]. New York: A Wiley-Intersciemce Publication, 1999.
[5] SEN M K, GUO Yuqi, SHUM K P. A class of idempotent semirings[J]. Semigroup Forum, 2000, 60:351-367.
[6] HOWIE J M. Fundamentals of semigroup theory[M]. New York: Oxford University, 1995.
[7] 王锐. 某些双半环的结构[D]. 济南:山东师范大学, 2011. WANG Rui. The structure of some bi-semirings[D]. Jinan: Shandong Normal University, 2011.
[1] ZHANG Qian-tao, LUO Yong-gui, ZHAO Ping. Rank and relative rank of the semigroup PD(n,r) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 63-70.
[2] JIN Jiu-lin, TENG Wen, ZHU Fu-yang, YOU Tai-jie, QU Yun-yun. Maximal subsemigroups of the finite transformation semigroup of weak Y-stabilizer [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 55-62.
[3] SUN Shuang, LIU Hong-xing. The inclusion graph of S-acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 121-126.
[4] KONG Xiang-jun, WANG Pei. Good congruences associated with multiplicative quasi-adequate transversals [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 1-3.
[5] LIANG Xing-liang, WU Su-peng, REN Jun. Characterization of monoids by C(P')acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 9-13.
[6] SHAO Yong. Semilattice-ordered completely regular periodic semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 1-5.
[7] WANG Dan, WANG Zheng-pan. Characterizing a band variety in terms of forbidden subsemigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 6-8.
[8] QIAO Hu-sheng, SHI Xue-qin. On homological classification of weakly torsion free Rees factor S-posets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 49-52.
[9] GONG Chun-mei, FENG Li-xia, REN Xue-ming. (*,~)-good congruences on completely J *,~-simple semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 11-16.
[10] QIAO Hu-sheng, ZHAO Ting-ting. On products of S-acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 16-19.
[11] WANG Shou-feng. λ-Semidirect products of regular semigroups with a multiplicative inverse transversal [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 20-23.
[12] WANG Yong-duo, MA Ya-jun. Simple dual Rickart modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 5-9.
[13] QIAO Hu-sheng, LIAO Min-ying. GP-coherent monoids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 1-4.
[14] QIAO Hu-sheng, JIN Wen-gang. On monoids over which all weakly injective right S-acts are regular [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 1-3.
[15] LUO Yong-gui. Maximal(regular)subsemigroups of the semigroup W(n,r) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!