JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (10): 21-27.doi: 10.6040/j.issn.1671-9352.0.2021.625

Previous Articles    

Feckly McCoy and feckly Armendariz rings

JIANG Mei-mei1, WANG Yao2, REN Yan-li3*   

  1. 1. School of Mathematics and Information Technology, Jiangsu Second Normal University, Nanjing 210013, Jiangsu, China;
    2. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;
    3. School of Information Engineering, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, China
  • Published:2022-10-06

Abstract: To discuss the various extension properties of feckly McCoy rings and feckly Armendariz rings, it is proved that(1)let R be a feckly Armendariz ring with J(R[x])=J(R)[x], if for each principal right ideal pR⊈J(R), rJR(pR)=aR where a∈J(R), then for each principal right ideal f(x)R[x]⊈J(R[x]), rJR[x](f(x)R[x])is generated as an ideal by an element which is in the Jacobson radical of R[x]. (2)let R be a feckly reduced ring with J(R[x])=J(R)[x], R is a right J-APP-ring if and only if R[x] is a right J-APP-ring. These deepen the study of these two new classes of rings.

Key words: feckly McCoy ring, feckly Armendariz ring, feckly reduced ring, extension of ring

CLC Number: 

  • O153.3
[1] UNGOR B, GURGUN O, HALICIOGLU S, et al. Feckly reduced rings[J]. Hacet J Math Stati, 2015, 44:375-384.
[2] KWAK T K. LEE Y, ÖZCAN A. On Jacobson and nil radical related to polynomial rings[J]. J Korean Math Soc, 2016, 53(2):415-431.
[3] BEDI S S, RAM J. Jacobson radical of skew polynomial rings and skew group rings[J]. Israel J Math, 1980, 35(4):327-338.
[4] AMITSUR S A. Radicals of polynomial rings[J]. Canad J Math, 1956, 8:355-361.
[5] LEI Zhen, CHEN Jianlong, YING Zhiling. A question on McCoy rings[J]. Bull Austr Math Soc, 2007, 76(1):137-141.
[6] NASR-ISFAHANI A R. On skew triangular matrix rings[J]. Comm Algebra, 2011, 39:4461-4469.
[7] OUYANG Lunqun, LIU Jinwang. Weak annihilator property of Malcev-Neumann rings[J]. Asia Acade Manag J Accoun Finan, 2013, 9:1-14.
[1] ZHAO Yang, ZHANG Wen-hui. Strongly Ding projective and strongly Ding injective modules over formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 37-45.
[2] GUO Hui-ying, ZHANG Cui-ping. Ext-strong Ding projective modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 31-36.
[3] ZHAO Tiao, ZHANG Chao. q-Cartan matrices of self-injective Nakayama algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 46-51.
[4] ZHANG Cui-ping, LIU Ya-juan. Strongly Gorenstein C-injective module and strongly Gorenstein C-flat module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 24-30.
[5] WANG Zhan-ping, YUAN Kai-ying. Strongly Gorenstein injective modules with respect to a cotorsion pair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 102-107.
[6] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[7] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[8] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[9] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[10] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[11] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[12] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[13] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35.
[14] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[15] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!