JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (10): 52-58.doi: 10.6040/j.issn.1671-9352.0.2021.623

Previous Articles    

Torsionfreeness and reflexivity under Frobenius extensions

ZHOU Rui, ZHAO Zhi-bing*   

  1. School of Mathematical Sciences, Anhui University, Hefei 230601, Anhui, China
  • Published:2022-10-06

Abstract: Let A/R be a Frobenius extension of rings, we prove that torsionfreeness and reflexivity of modules are preserved under Frobenius extension, that is, for an A-module M, MA is torsionfree(resp. reflexive)as an A-module if and only if M is torsionfree(resp. reexive)as an R-module.

Key words: torsionfree modules, reflexive modules, Forbenius extensions

CLC Number: 

  • O154.2
[1] KASCH F. Grundlagen einer theorie der Frobenius-Erweiterungen[J]. Math Ann, 1954, 127:453-474.
[2] NAKAMAYA T, TSUZUKU T. On Frobenius extension Ⅰ[J]. Nagoya Math J, 1960, 17:89-110.
[3] NAKAMAYA T, TSUZUKU T. On Frobenius extension Ⅱ[J]. Nagoya Math J, 1961, 19:127-148.
[4] MORITA K. Adojint pairs of functors and Frobenius extension[J]. Sci Rep ToykoKyoikuDaigaku(Sect. A), 1965, 9:40-71.
[5] XI Changchang. Frobenius bimodules and flat-dominant dimensions[J]. Sci China Math, 2021, 64:33-44.
[6] KADISON L. New examples of Frobenius extensions[M] //University Lecture Series 14. Provedence: Amer Math Soc, 1999.
[7] AUSLANDER M, BRIDGER M. Stable module theory[M]. New York: Memoirs of the American Mathematical Society, 1969: 94.
[8] ANDERSON F W, FULLER K R. Rings and categories of modules[M]. New York: Springer-Verlag, 1974.
[9] HUANG Zhaoyong. Selforthogonal modules with finite injective dimension III[J]. Algebra Rep Theory, 2009, 12:371-384.
[10] AUSLANDER M. Coherent functors[M]. Berlin: Springer, 1966.
[11] HUANG Zhaoyong. ω-k-torsionfree modules and ω-left approximation dimension[J]. Science in China Series A Mathematics, 2001, 44(2):184-192.
[12] AUSLANDER M, REITEN I. Applications of contravariantly fnite subcategories[J]. Advances in Mathematics, 1991, 86(1):111-152.
[13] ZHAO Zhaobing. Gorenstein homological invariant properties under Frobenius extensions[J]. Sci China Math, 2019, 62:2487-2496.
[14] REN Wei. Gorenstein projective and injective dimensions over Frobenius extensions[J]. Comm Algebra, 2018, 46:1-7.
[15] 徐辉, 赵志兵. 相对无挠模[J]. 山东大学学报(理学版), 2017, 52:75-80. XU Hui, ZHAO Zhibing. Relatively torsionfree modules[J]. Journal of Shandong University(Natural Science), 2017, 52:75-80.
[1] CHEN Mei-hui, LIANG Li. Strongly Gorenstein projective objects in comma categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(8): 81-85.
[2] ZHAO Tiao, ZHANG Chao. q-Cartan matrices of self-injective Nakayama algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 46-51.
[3] GUO Shou-tao, WANG Zhan-ping. Gorenstein homological dimensions of modules under exact zero-divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 17-21.
[4] CHEN Wen-qian, ZHANG Xiao-jin, ZAN Li-bo. The number of tilting modules over Gorenstein algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 14-16.
[5] . FR-injective and FR-flat dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 1-6.
[6] WANG Xiao-qing, LIANG Li. Strongly cotorsion modules under faithfully flat co-base change [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 92-94.
[7] LUO Xiao-qiang, XING Jian-min. Ding gr-injective and gr-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 87-91.
[8] YANG Chun-hua. A note on the Gc-injective dimension of a complex [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 82-86.
[9] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[10] XU Hui, ZHAO Zhi-bing. Relative torsionless modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 75-80.
[11] SUN Wei-kun, LIN Han-xing. Representation dimension of one-point extension algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 85-91.
[12] CHENG Hai-xia, YIN Xiao-bin. Gorenstein injective objects in Abelian categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 79-84.
[13] XIE Zong-zhen, ZHANG Xiao-jin. On algebras with all τ-rigid modules projective [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 16-20.
[14] CHEN Xiu-li, CHEN Jian-long. Copure projective dimensions under Hopf extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 7-10.
[15] ZHANG Li-ying, YANG Gang. Cartan-Eilenberg Gorenstein AC-cohomology dimension of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 77-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!