JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (8): 88-94.doi: 10.6040/j.issn.1671-9352.0.2021.615
Previous Articles Next Articles
HAN Qing-xiu, LIU Hong-xia, WU Yun*
CLC Number:
[1] ARSHAD M, SEADAWY A R, LU D, et al. Travelling wave solutions of Drinfeld-Sokolov-Wilson, Whitham-Broer-Kaup and(2+1)-dimensional Broer-Kaup-Kupershmit equations and their applications[J]. Chinese Journal of Physics, 2017, 55(3):780-797. [2] XU Guiqiong, LI Zhibin. Exact travelling wave solutions of the Whitham-Broer-Kaup and Broer-Kaup-Kupershmidt equations[J]. Chaos, Solitons and Fractals, 2004, 24(2):549-556. [3] 翁献君,杨先林.(2+1)维Broer-Kaup-Kupershmidt方程的精确解[J]. 通信技术,2008,41(10):216-217. WENG Xianjun, YANG Xianlin. The exact solution of(2+1)-dimensional Broer-Kaup-Kupershmidt equation[J]. Communication Technology, 2008, 41(10):216-217. [4] 陈未路,张雯婷,张李溥,等.(2+1)维Broer-Kaup-Kupershmidt方程dromions之间的相互作用(英文)[J]. 理论物理通讯,2013,59(1):5. CHEN Weilu, ZHANG Wenting, ZHANG Lipu, et al. Interaction behaviors between special dromions in the(2+1)-dimensional Broer-Kaup-Kupershmidt equation[J]. Theoretical Physical Communication, 2013, 59(1):5. [5] YOUNIS M, RIZVI S, BALEANU D, et al. Lump and rogue wave solutions for the Broer-Kaup-Kupershmidt system[J]. Chinese Journal of Physics, 2020, 68:19-27. [6] WEN Xiaoyong. N-soliton solutions and localized structures for the(2+1)-dimensional Broer-Kaup-Kupershmidt system[J]. Nonlinear Analysis Real World Applications, 2011, 12(6):3346-3355. [7] KASSEM M M, RASHED A S. N-solitons and cuspon waves solutions of(2+1)-dimensional Broer-Kaup-Kupershmidt equations via hidden symmetries of lie optimal system-science-direct[J]. Chinese Journal of Physics, 2019, 57:90-104. [8] TANG Y, YUEN M, ZHANG L. Double wronskian solutions to the(2+1)-dimensional Broer-Kaup-Kupershmidt equation[J]. Applied Mathematics Letters, 2020, 105:106285. [9] YOMBA E. The extended Fans sub-equation method and its application to KdV-MKdV, BKK and variant Boussinesq equations[J]. Physics Letters A, 2005, 336(6):463-476. [10] 王晓民,苏道毕力格,庞晶.(2+1)维Broer-Kaup-Kupershmidt方程组的行波解[J]. 数学的实践与认识,2015, 45(16):203-208. WANG Xiaoming, SUDAO Bilige, PANG Jing. Traveling wave solution of(2+1)-dimensional Broer-Kaup-Kupershmidt equations[J]. Practice and Knowledge of Mathematics, 2015, 45(16):203-208. [11] 张芸芝,江波.(2+1)维Broer-Kaup-Kupershmidt方程的同宿轨道与孤立波解[J]. 江苏技术师范学院学报,2012,18(4):64-67. ZHANG Yunzhi, JIANG Bo. Homoclinic orbit with isolated wave solutions of(2+1)-dimensional Broer-Kaup-Kupershmidt equation[J]. Journal of Jiangsu Technical Normal College, 2012, 18(4):64-67. [12] WU Yun, LIU Zhengrong. New types of nonlinear waves and bifurcation phenomena in Schamel-Korteweg-de Vries equation[J/OL]. Abstract and Applied Analysis, 2013[2022-1-10].https://doi.org/10.1155/2013/483492. [13] WU Yun, LIU Zhengrong. Bifurcation phenomena of nonlinear waves in a generalized Zakharov-Kuznetsov equation[J/OL]. Advances in Mathematical Physics, 2013[2022-1-10].https://doi.org/10.1155/2013/812120. [14] SONG Ming, LI Shaoyong, CAO Jun. New exact solutions for the(2+1)-dimensional Broer-Kaup-Kupershmidt equations[J/OL]. Abstract and Applied Analysis, 2010[2022-1-10].https://doi.org/10.1155/2010/652649. [15] 唐亚宁,陈燕南.(2+1)维Broer-Kaup-Kupershmidt方程的分支和行波解(英文)[J]. 纺织高校基础科学学报,2013,26(3):6. TANG Yaning, CHEN Yanna. Bifurcations and traveling wave solutions for the(2+1)-dimensional Broer-Kaup-Kupershmidt equation[J]. Basic Sciences Journal of Textile Universities, 2013, 26(3):6. [16] 李继彬.非线性波方程研究的动力系统方法和分支与混沌[EB/OL].(2007-01-29)[2022-1-10]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SNAD000001222457&DbName=SNAD2012. LI Jibin. Nonlinear wave equations study on dynamical system methods and branching with chaos[EB/OL].(2007-01-29)[2022-1-10].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SNAD000001222457&DbName=SNAD2012. [17] 李少勇.几类偏微分方程的非线性波解及其分支[D]. 广州:华南理工大学,2015. LI Shaoyong. Nonlinear wave solutions of several classes of partial differential equations and their branches[D]. Guangzhou: South China University of Technology, 2015. |
[1] | DONG Li. Lower bounds for blow up time of two nonlinear wave equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 56-60. |
[2] | FU Juan, ZHANG Rui, WANG Cai-jun, ZHANG Jing. The stability of a predator-prey diffusion model with Beddington-DeAngelis functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 115-122. |
[3] | DONG Jian-wei, LOU Guang-pu, WANG Yan-ping. Uniqueness of stationary solutions to a simplified energy-transport model for semiconductors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 37-41. |
[4] | LÜ Hong-jie, LIU Jing-jing, QI Jing, LIU Shuo. Blow-up of a weakly dissipative μ-Hunter-Saxton equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 55-59. |
[5] | DONG Jian-wei, CHENG Shao-hua, WANG Yan-ping. Classical solutions to stationary one-dimensional quantum energy-transport model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(03): 52-56. |
[6] | CHEN Zhi-hui, WANG Zhen-zhen, CHENG Yong-kuan*. Soliton solutions for quasilinear Schrdinger equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 58-62. |
[7] | LIU Yan-qin,XU Ming-yu and JIANG Xiao-yun . The fractional nonlinear convection-diffusion equation and its solution [J]. J4, 2007, 42(1): 35-39 . |
[8] | SHI Chang-guang . Multi-soliton solution of the Faddeev model [J]. J4, 2007, 42(7): 38-40 . |
[9] | CHEN Peng-yu, MA Wei-feng, Ahmed Abdelmonem. Existence of mild solutions for a class of fractional stochastic evolution equations with nonlocal initial conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 13-23. |
[10] | ZHANG Shen-gui. Existence of solutions for fractional Kirchhoff-type equation with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 48-55. |
[11] | WANG Hai-quan, CHONG Ge-zi. Local Gevrey regularity and analyticity of the solutions to the initial value problem associated with the two-component Novikov system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 56-63. |
[12] | MENG Xi-wang, WANG Juan. Blow up of solutions to wave equations in the de Sitter spacetime [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 64-75. |
[13] | DU Ya-li, WANG Xuan. Pullback attractor for the non-autonomous Berger equation with nonlinear damping [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(6): 30-41. |
[14] | ZHOU Yan-xia, WANG Xin-ru, XU Xiu-juan. Gradient estimates for weak solutions of A-harmonic equation under nonstandard growth [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(6): 47-55. |
[15] | OUYANG Bai-ping, XIAO Sheng-zhong. Global nonexistence of solutions to a class of semilinear double-wave equations with space-dependent coefficients on the nonlinearity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(9): 59-65. |