JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (2): 105-110.doi: 10.6040/j.issn.1671-9352.0.2022.006

Previous Articles    

(n,d)-Injective modules over triangular matirx rings

DAIQING Ang-mao, LU Bo   

  1. College of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030, Gansu, China
  • Published:2023-02-12

Abstract: Let A, B be rings, U a (B,A)-bimodule, n, d non-negative integers, T=(A 0U B)a formal triangular matrix ring, firstly, it is shown that M=(M1M2)φM is an n-presented left T-module if and only if M1 is an n-presented left A-module, Coker φM is an n-presented left B-module and φM:UAM1 → M2 is a monomorphism. Secondly, it is shown that M1 is an (n,d)-injective left A-module and M2 is an(n,d)-injective left B-module whenever M=(M1M2)φM is an(n,d)-injective left T-module.

Key words: triangular matirx ring, n-presented module, (n,d)-injective module

CLC Number: 

  • O154.2
[1] HAGHANY A, VARADARAJAN K. Study of formal triangular matrix rings[J]. Communications in Algebra, 1999, 27(11):5507-5525.
[2] HAGHANY A, VARADARAJAN K. Study of modules over formal triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2000, 147(1):41-58.
[3] ASADOLLAHI J, SALARIAN S. On the vanishing of Ext over formal triangular matrix rings[J]. Forum Mathematicum, 2006, 18(6):951-966.
[4] ZHANG Pu. Gorenstein projective modules and symmetric recollements[J]. Journal of Algebra, 2013, 388:65-80.
[5] ENOCHS E E, IZURDIAGA M C, TORRECILLAS B. Gorenstein conditions over triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2014, 218(8):1544-1554.
[6] ZHU Rongmin, LIU Zhongkui, WANG Zhanping. Gorenstein homological dimensions of modules over triangular matrix rings[J]. Turkish Journal Mathematic, 2016, 40(1):146-150.
[7] MAO Lixin. Gorenstein flat modules and dimensions over triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2020, 224:1-10.
[8] 吴德军, 周慧. 三角矩阵环上 Gorenstein FP-内射模的刻画[J]. 山东大学学报(理学版), 2021, 56(8):86-93. WU Dejun, ZHOU Hui. A characterization of Gorenstein FP-injective modules over triangular matrix rings[J]. Journal of Shandong University(Natural Science), 2021, 56(8):86-93.
[9] 王淼, 王占平. 三角矩阵环上投射余可解的 Gorenstein 平坦模[J]. 吉林大学学报(理学版), 2021, 59(1):39-44. WANG Miao, WANG Zhanping. Projectively coresolved Gorenstein flat modules over triangular matrix rings[J]. Journal of Jilin University(Science Edition), 2021, 59(1):39-44.
[10] GREEN E L. On the representation theory of rings in matrix form[J]. Pacific Journal of Mathematics, 1982, 100(1):123-138.
[11] GOODEARL K R, WARFIELD R B. An introduction to non-commutative Noetherian rings[M] //London Mathematical Society Student Texts, Vol.16, [S.l.] : [s.n.] , 1989.
[12] MAO Lixin. Cotorsion pairs and approximation classes over formal triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2019, 10(6):62-71.
[13] COSTA D L. Parameterizing families of non-noetherian rings[J]. Communications in Algebra, 1994, 22(10):3997-4011.
[14] BRAVO D, PÉREZ M A. Finiteness conditions and cotorsion pairs[J]. Journal of Pure and Applied Algebra, 2017, 221(6):1249-1267.
[15] ZHOU Dexu. On n-Coherent rings and(n,d)-rings[J]. Communications in Algebra, 2004, 32(6):2425-2441.
[1] CHEN Mei-hui, LIANG Li. Strongly Gorenstein projective objects in comma categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(8): 81-85.
[2] ZHAO Tiao, ZHANG Chao. q-Cartan matrices of self-injective Nakayama algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 46-51.
[3] GUO Shou-tao, WANG Zhan-ping. Gorenstein homological dimensions of modules under exact zero-divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 17-21.
[4] CHEN Wen-qian, ZHANG Xiao-jin, ZAN Li-bo. The number of tilting modules over Gorenstein algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 14-16.
[5] . FR-injective and FR-flat dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 1-6.
[6] LUO Xiao-qiang, XING Jian-min. Ding gr-injective and gr-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 87-91.
[7] YANG Chun-hua. A note on the Gc-injective dimension of a complex [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 82-86.
[8] WANG Xiao-qing, LIANG Li. Strongly cotorsion modules under faithfully flat co-base change [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 92-94.
[9] XU Hui, ZHAO Zhi-bing. Relative torsionless modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 75-80.
[10] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[11] SUN Wei-kun, LIN Han-xing. Representation dimension of one-point extension algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 85-91.
[12] XIE Zong-zhen, ZHANG Xiao-jin. On algebras with all τ-rigid modules projective [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 16-20.
[13] CHENG Hai-xia, YIN Xiao-bin. Gorenstein injective objects in Abelian categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 79-84.
[14] CHEN Xiu-li, CHEN Jian-long. Copure projective dimensions under Hopf extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 7-10.
[15] SONG Yan-hui, GUO Ting. Gorenstein weak flat modules and dimension over right GWF-closed rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(8): 99-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!