JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (11): 51-63.doi: 10.6040/j.issn.1671-9352.0.2023.504
QU Yaocheng1,2, YAO Xuejing2, SUN Yundong1
CLC Number:
[1] FU Z W, LI S J, HAN S F, et al. Antibody drug conjugate: the “biological missile” for targeted cancer therapy[J]. Signal Transduction and Targeted Therapy, 2022, 7:93. [2] TSUCHIKAMA K, AN Z Q. Antibody-drug conjugates: recent advances in conjugation and linker chemistries[J]. Protein & Cell, 2018, 9(1):33-46. [3] MCKERTISH C M, KAYSER V. Advances and limitations of antibody drug conjugates for cancer[J]. Biomedicines, 2021, 9(8):872. [4] CHAU C H, STEEG P S, FIGG W D. Antibody-drug conjugates for cancer[J]. Lancet, 2019, 394:793-804. [5] MAECKER H, JONNALAGADDA V, BHAKTA S, et al. Exploration of the antibody-drug conjugate clinical landscape[J]. mAbs, 2023, 15(1):2229101. [6] WANG Z J, LI H X, GOU L T, et al. Antibody-drug conjugates: recent advances in payloads[J]. Acta Pharmaceutica Sinica B, 2023, 13(10):4025-4059. [7] NOWAK C, CHEUNG J K, DELLATORE S M, et al. Forced degradation of recombinant monoclonal antibodies: a practical guide[J]. mAbs, 2017, 9(8):1217-1230. [8] AGRAWAL N, CHENNAMSETTY N. Understanding, predicting, and mitigating the impact of post-translational physicochemical modifications, including aggregation, on the stability of biopharmaceutical drug products[M] //Developability of Biotherapeutics. Leiden: CRC Press, 2015:61-84. [9] LUO Q Z, CHUNG H H, BORTHS C, et al. Structural characterization of a monoclonal antibody-maytansinoid immunoconjugate[J]. Analytical Chemistry, 2016, 88(1):695-702. [10] BUECHELER J W, WINZER M, WEBER C, et al. Oxidation-induced destabilization of model antibody-drug conjugates[J]. Journal of Pharmaceutical Sciences, 2019, 108(3):1236-1245. [11] CHEN Y, DOUD E, STONE T, et al. Rapid global characterization of immunoglobulin G1 following oxidative stress[J]. mAbs, 2019, 11(6):1089-1100. [12] BOLL B, BESSA J, FOLZER E, et al. Extensive chemical modifications in the primary protein structure of IgG1 subvisible particles are necessary for breaking immune tolerance[J]. Molecular Pharmaceutics, 2017, 14(4):1292-1299. [13] LIU D J, REN D, HUANG H, et al. Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation[J]. Biochemistry, 2008, 47(18):5088-5100. [14] LIU H C, GAZA-BULSECO G, XIANG T, et al. Structural effect of deglycosylation and methionine oxidation on a recombinant monoclonal antibody[J]. Molecular Immunology, 2008, 45(3):701-708. [15] BERTOLOTTI-CIARLET A, WANG W R, LOWNES R, et al. Impact of methionine oxidation on the binding of human IgG1 to Fc Rn and Fc gamma receptors[J]. Molecular Immunology, 2009, 46(8/9):1878-1882. [16] BURKITT W, DOMANN P, OCONNOR G. Conformational changes in oxidatively stressed monoclonal antibodies studied by hydrogen exchange mass spectrometry[J]. Protein Science, 2010, 19(4):826-835. [17] MO J J, YAN Q R, SO C K, et al. Understanding the impact of methionine oxidation on the biological functions of IgG1 antibodies using hydrogen/deuterium exchange mass spectrometry[J]. Analytical Chemistry, 2016, 88(19):9495-9502. [18] STRACKE J, EMRICH T, RUEGER P, et al. A novel approach to investigate the effect of methionine oxidation on pharmacokinetic properties of therapeutic antibodies[J]. mAbs, 2014, 6(5):1229-1242. [19] GAO X, JI J A, VEERAVALLI K, et al. Effect of individual Fc methionine oxidation on FcRn binding: Met252 oxidation impairs FcRn binding more profoundly than Met428 oxidation[J]. Journal of Pharmaceutical Sciences, 2015, 104(2):368-377. [20] FISHKIN N, MALONEY E K, CHARI R V J, et al. A novel pathway for maytansinoid release from thioether linked antibody-drug conjugates(ADCs)under oxidative conditions[J]. Chemical Communications, 2011, 47(38):10752-10754. [21] ZHU Y W, LIU K, WANG K L, et al. Treatment-related adverse events of antibody-drug conjugates in clinical trials: a systematic review and meta-analysis[J]. Cancer, 2023, 129(2):283-295. [22] GLOVER Z K, WECKSLER A, ARYAL B, et al. Physicochemical and biological impact of metal-catalyzed oxidation of IgG1 monoclonal antibodies and antibody-drug conjugates via reactive oxygen species[J]. mAbs, 2022, 14(1):2122957. [23] YAN B X, YATES Z, BALLAND A, et al. Human IgG1 hinge fragmentation as the result of H2O2-mediated radical cleavage[J]. The Journal of Biological Chemistry, 2009, 284(51):35390-35402. [24] AKBARIAN M, CHEN S H. Instability challenges and stabilization strategies of pharmaceutical proteins[J]. Pharmaceutics, 2022, 14(11):2533. [25] EISNER D R, HUI A D, EPPLER K, et al. Stability evaluation of hydrogen peroxide uptake samples from monoclonal antibody drug product aseptically filled in vapor phase hydrogen peroxide-sanitized barrier systems: a case study[J]. PDA Journal of Pharmaceutical Science and Technology, 2019, 73(3):285-291. [26] YOU J W, ZHANG J, WANG J, et al. Cysteine-based coupling: challenges and solutions[J]. Bioconjugate Chemistry, 2021, 32(8):1525-1534. [27] DATTA-MANNAN A, CHOI H, STOKELL D, et al. The properties of cysteine-conjugated antibody-drug conjugates are impacted by the IgG subclass[J]. The AAPS Journal, 2018, 20(6):103. [28] PATEL J, KOTHARI R, TUNGA R, et al. Stability considerations for biopharmaceutical of part 1: overview of protein and peptide degradation pathways[J]. BioProcess International, 2011, 9(1):20-24. [29] LI S, SCHÖNEICH C, BORCHARDT R T. Chemical instability of protein pharmaceuticals: mechanisms of oxidation and strategies for stabilization[J]. Biotechnology and Bioengineering, 1995, 48(5):490-500. |
[1] | LI Xiu-e1, GAO Shu-lian2, ZHANG Qiu3*. Study of the toxicity of functionalized multi-walled carbon nanotubes to NHFB cells [J]. J4, 2010, 45(5): 6-11. |
|