JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (11): 51-63.doi: 10.6040/j.issn.1671-9352.0.2023.504
Previous Articles Next Articles
Yaocheng QU1,2(),Xuejing YAO2,Yundong SUN1,*(
)
CLC Number:
1 |
FU Z W , LI S J , HAN S F , et al. Antibody drug conjugate: the "biological missile" for targeted cancer therapy[J]. Signal Transduction and Targeted Therapy, 2022, 7, 93.
doi: 10.1038/s41392-022-00947-7 |
2 | TSUCHIKAMA K , AN Z Q . Antibody-drug conjugates: recent advances in conjugation and linker chemistries[J]. Protein & Cell, 2018, 9 (1): 33- 46. |
3 |
MCKERTISH C M , KAYSER V . Advances and limitations of antibody drug conjugates for cancer[J]. Biomedicines, 2021, 9 (8): 872.
doi: 10.3390/biomedicines9080872 |
4 |
CHAU C H , STEEG P S , FIGG W D . Antibody-drug conjugates for cancer[J]. Lancet, 2019, 394, 793- 804.
doi: 10.1016/S0140-6736(19)31774-X |
5 |
MAECKER H , JONNALAGADDA V , BHAKTA S , et al. Exploration of the antibody-drug conjugate clinical landscape[J]. mAbs, 2023, 15 (1): 2229101.
doi: 10.1080/19420862.2023.2229101 |
6 |
WANG Z J , LI H X , GOU L T , et al. Antibody-drug conjugates: recent advances in payloads[J]. Acta Pharmaceutica Sinica B, 2023, 13 (10): 4025- 4059.
doi: 10.1016/j.apsb.2023.06.015 |
7 |
NOWAK C , CHEUNG J K , DELLATORE S M , et al. Forced degradation of recombinant monoclonal antibodies: a practical guide[J]. mAbs, 2017, 9 (8): 1217- 1230.
doi: 10.1080/19420862.2017.1368602 |
8 | AGRAWAL N, CHENNAMSETTY N. Understanding, predicting, and mitigating the impact of post-translational physicochemical modifications, including aggregation, on the stability of biopharmaceutical drug products[M]//Developability of Biotherapeutics. Leiden: CRC Press, 2015: 61-84. |
9 |
LUO Q Z , CHUNG H H , BORTHS C , et al. Structural characterization of a monoclonal antibody-maytansinoid immunoconjugate[J]. Analytical Chemistry, 2016, 88 (1): 695- 702.
doi: 10.1021/acs.analchem.5b03709 |
10 |
BUECHELER J W , WINZER M , WEBER C , et al. Oxidation-induced destabilization of model antibody-drug conjugates[J]. Journal of Pharmaceutical Sciences, 2019, 108 (3): 1236- 1245.
doi: 10.1016/j.xphs.2018.10.039 |
11 |
CHEN Y , DOUD E , STONE T , et al. Rapid global characterization of immunoglobulin G1 following oxidative stress[J]. mAbs, 2019, 11 (6): 1089- 1100.
doi: 10.1080/19420862.2019.1625676 |
12 |
BOLL B , BESSA J , FOLZER E , et al. Extensive chemical modifications in the primary protein structure of IgG1 subvisible particles are necessary for breaking immune tolerance[J]. Molecular Pharmaceutics, 2017, 14 (4): 1292- 1299.
doi: 10.1021/acs.molpharmaceut.6b00816 |
13 |
LIU D J , REN D , HUANG H , et al. Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation[J]. Biochemistry, 2008, 47 (18): 5088- 5100.
doi: 10.1021/bi702238b |
14 |
LIU H C , GAZA-BULSECO G , XIANG T , et al. Structural effect of deglycosylation and methionine oxidation on a recombinant monoclonal antibody[J]. Molecular Immunology, 2008, 45 (3): 701- 708.
doi: 10.1016/j.molimm.2007.07.012 |
15 | BERTOLOTTI-CIARLET A , WANG W R , LOWNES R , et al. Impact of methionine oxidation on the binding of human IgG1 to Fc Rn and Fc gamma receptors[J]. Molecular Immunology, 2009, 46 (8/9): 1878- 1882. |
16 |
BURKITT W , DOMANN P , O'CONNOR G . Conformational changes in oxidatively stressed monoclonal antibodies studied by hydrogen exchange mass spectrometry[J]. Protein Science, 2010, 19 (4): 826- 835.
doi: 10.1002/pro.362 |
17 |
MO J J , YAN Q R , SO C K , et al. Understanding the impact of methionine oxidation on the biological functions of IgG1 antibodies using hydrogen/deuterium exchange mass spectrometry[J]. Analytical Chemistry, 2016, 88 (19): 9495- 9502.
doi: 10.1021/acs.analchem.6b01958 |
18 |
STRACKE J , EMRICH T , RUEGER P , et al. A novel approach to investigate the effect of methionine oxidation on pharmacokinetic properties of therapeutic antibodies[J]. mAbs, 2014, 6 (5): 1229- 1242.
doi: 10.4161/mabs.29601 |
19 |
GAO X , JI J A , VEERAVALLI K , et al. Effect of individual Fc methionine oxidation on FcRn binding: Met252 oxidation impairs FcRn binding more profoundly than Met428 oxidation[J]. Journal of Pharmaceutical Sciences, 2015, 104 (2): 368- 377.
doi: 10.1002/jps.24136 |
20 |
FISHKIN N , MALONEY E K , CHARI R V J , et al. A novel pathway for maytansinoid release from thioether linked antibody-drug conjugates (ADCs) under oxidative conditions[J]. Chemical Communications, 2011, 47 (38): 10752- 10754.
doi: 10.1039/c1cc14164c |
21 |
ZHU Y W , LIU K , WANG K L , et al. Treatment-related adverse events of antibody-drug conjugates in clinical trials: a systematic review and meta-analysis[J]. Cancer, 2023, 129 (2): 283- 295.
doi: 10.1002/cncr.34507 |
22 |
GLOVER Z K , WECKSLER A , ARYAL B , et al. Physicochemical and biological impact of metal-catalyzed oxidation of IgG1 monoclonal antibodies and antibody-drug conjugates via reactive oxygen species[J]. mAbs, 2022, 14 (1): 2122957.
doi: 10.1080/19420862.2022.2122957 |
23 |
YAN B X , YATES Z , BALLAND A , et al. Human IgG1 hinge fragmentation as the result of H2O2-mediated radical cleavage[J]. The Journal of Biological Chemistry, 2009, 284 (51): 35390- 35402.
doi: 10.1074/jbc.M109.064147 |
24 |
AKBARIAN M , CHEN S H . Instability challenges and stabilization strategies of pharmaceutical proteins[J]. Pharmaceutics, 2022, 14 (11): 2533.
doi: 10.3390/pharmaceutics14112533 |
25 |
EISNER D R , HUI A D , EPPLER K , et al. Stability evaluation of hydrogen peroxide uptake samples from monoclonal antibody drug product aseptically filled in vapor phase hydrogen peroxide-sanitized barrier systems: a case study[J]. PDA Journal of Pharmaceutical Science and Technology, 2019, 73 (3): 285- 291.
doi: 10.5731/pdajpst.2018.009340 |
26 |
YOU J W , ZHANG J , WANG J , et al. Cysteine-based coupling: challenges and solutions[J]. Bioconjugate Chemistry, 2021, 32 (8): 1525- 1534.
doi: 10.1021/acs.bioconjchem.1c00213 |
27 |
DATTA-MANNAN A , CHOI H , STOKELL D , et al. The properties of cysteine-conjugated antibody-drug conjugates are impacted by the IgG subclass[J]. The AAPS Journal, 2018, 20 (6): 103.
doi: 10.1208/s12248-018-0263-0 |
28 | PATEL J , KOTHARI R , TUNGA R , et al. Stability considerations for biopharmaceutical of part 1: overview of protein and peptide degradation pathways[J]. BioProcess International, 2011, 9 (1): 20- 24. |
29 |
LI S , SCHÖNEICH C , BORCHARDT R T . Chemical instability of protein pharmaceuticals: mechanisms of oxidation and strategies for stabilization[J]. Biotechnology and Bioengineering, 1995, 48 (5): 490- 500.
doi: 10.1002/bit.260480511 |
[1] | LI Xiu-e1, GAO Shu-lian2, ZHANG Qiu3*. Study of the toxicity of functionalized multi-walled carbon nanotubes to NHFB cells [J]. J4, 2010, 45(5): 6-11. |
|