JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (3): 41-48.doi: 10.6040/j.issn.1671-9352.0.2023.526
• Financial Mathematics • Previous Articles Next Articles
LIU Guidong1, KE Yilong2, YOU Guoqiao1*, LIU Manxi2
CLC Number:
[1] LEKIEN F, LEONARD N. Dynamically consistent Lagrangian coherent structures[C] // Experimental Chaos: 8th Experimental Chaos Conference. Florence: AIP Publishing, 2004:132-139. [2] SHADDEN S C, LEKIEN F, MARSDEN J E. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows[J]. Physica D: Nonlinear Phenomena, 2005, 212:271-304. [3] SAPSIS T, HALLER G. Inertial particle dynamics in a hurricane[J]. Journal of the Atmospheric Sciences, 2009, 66:2481-2492. [4] CARDWELL B M, MOHSENI K. Vortex shedding over two-dimensional airfoil: where do the particles come from?[J]. AIAA Journal, 2008, 46(3):545-547. [5] TANG W B, CHAN P W, HALLER G. Accurate extraction of Lagrangian coherent structures over finite domains with application to flight data analysis over Hong Kong International Airport[J]. Chaos, 2010, 20:017502. [6] BADAS M G, DOMENICHINI F, QUERZOLI G. Quantification of the blood mixing in the left ventricle using finite time Lyapunov exponents[J]. Meccania, 2017, 52:529-544. [7] LIPINSKI D, MOHSENI K. Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequorea victoria[J]. Journal of Experimental Biology, 2009, 212:2436-2447. [8] GREEN M A, ROWLEY C W, SMITS A J. Using hyperbolic Lagrangian coherent structures to investigate vortices in bioinspired fluid flows[J]. Chaos, 2010, 20:017510. [9] LUKENS S, YANG X Z, FAUCI L. Using Lagrangian coherent structures to analyze fluid mixing by cilia[J]. Chaos, 2010, 20:017511. [10] MANDA B M, SENYANGE B, SKOKOS C. Chaotic wave-packet spreading in two-dimensional disordered nonlinear lattices[J]. Physical Review E, 2020, 101:032206. [11] LASAGNA D, SHARMA A, MEYERS J. Periodic shadowing sensitivity analysis of chaotic systems[J]. Journal of Computational Physics, 2019, 391:119-141. [12] CARUSONE A, SICOT C, BONNET J P. Transient dynamical effects induced by single-pulse fluidic actuation over an airfoil[J]. Experiments in Fluids, 2021, 62:25. [13] ECKMANN J P, KAMPHORST S O, RUELLE D. Recurrence plots of dynamical systems[J]. Europhysics Letters, 1987, 4(9):973-977. [14] 崔澜,张宏立,马萍,等. 基于递归熵及长短期记忆神经网络的滚动轴承退化趋势预测[J]. 轴承,2021,496(3):45-51,55. CUI Lan, ZHANG Hongli, MA Ping, et al. Prediction on degradation trend of rolling bearings based on recurrent entropy and long short-term memory neural network[J]. Bearing, 2021, 496(3):45-51,55. [15] 尚前明,朱仁杰,杨安声,等. 基于RP-CNN的柴油机故障识别[J]. 船舶工程,2022,44(6):89-116. SHANG Qianming, ZHU Renjie, YANG Ansheng, et al. Fault identification of diesel engine based on RP-CNN[J]. Ship Engineering, 2022, 44(6):89-116. [16] 钟季康,宋志怀,郝为强. RQA在肌电分析中的应用[J]. 生物物理学报,2002,18(2):241-245. ZHONG Jikang, SONG Zhihuai, HAO Weiqiang. Application of recurrence qualification analysis to emg[J]. Acta Biophysica Sinica, 2002, 18(2):241-245. [17] WEBBER C L, ZBILUT J P. Dynamical assessment of physiological systems and states using recurrence plot strategies[J]. Journal of Applied Physiology, 1994, 76(2):965-973. [18] MARWAN N, ROMANO M C, THIEL M, et al. Recurrence plots for the analysis of complex systems[J]. Physics Reports, 2007, 438(5/6):237-329. [19] CORSO G, PRADO T L, LIMA G, et al. Quantifying entropy using recurrence matrix microstates[J]. Chaos, 2018, 28:083108. [20] PRADO T L, CORSO G, LIMA G, et al. Maximum entropy principle in recurrence plot analysis on stochastic and chaotic systems[J]. Chaos, 2020, 30:043123. [21] YOU Guoqiao, KE Yilong. ENRM: an alternative tool for studying dynamical systems[J]. Chaos, Solitons and Fractals, 2023, 174:113889. [22] 吴礼斌,刘盛宇,王烨. 基于递归定量分析与内生结构突变模型的股票市场非线性特征研究[J]. 中国管理科学,2012,20:315-321. WU Libin, LIU Shengyu, WANG Ye. Using recurrence quantification analysis and endogenous structural break test to distinguish nonlinear dynamic characteristics of Chinas stock market[J]. Chinese Journal of Management Science, 2012, 20:315-321. [23] 李燕,郝晓玲,李湛. 全球股市有效性的动态演化及量化比较研究[J]. 管理科学学报,2022,25(4):21-43. LI Yan, HAO Xiaoling, LI Zhan. Dynamic evolution and quantitative comparison of global stock market effectiveness[J]. Journal of Management Sciences in China, 2022, 25(4):21-43. [24] 李燕. 基于递归图的股票市场非线性动力学演化研究[D]. 上海:上海财经大学,2020. LI Yan. Research on nonlinear dynamics evolution of stock market based on recurrence plot[D]. Shanghai: Shanghai University of Finance and Economics, 2020. |
[1] | Yuling LIU. Structured backward error for a class of generalized saddle point problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 40-45. |
[2] | ALI Adil,RAHMAN Kaysar. Differential quadrature method for solving the generalized Burgers-Fisher equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 30-39. |
[3] | Zhenai LI,Hui WEI,Xin CHEN. MNSGA-Ⅱ algorithm based on bi-objective for solving nonlinear equation systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 22-29. |
[4] | Lulu AI,Yunxian LIU. An ultra-weak discontinuous Galerkin method for drift-diffusion model of semiconductor problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 10-21. |
[5] | Yang WANG. Block triangular splitting and its preconditioning iterative algorithms for a class of complex symmetric linear systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 1-9. |
[6] | Wenhui DU,Xiangtuan XIONG. Iterated fractional Tikhonov method for simultaneous inversion of the source term and initial data in time-fractional diffusion equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(8): 77-83. |
[7] | Xiumin LYU,Qian GE,Jin LI. Barycentric interpolation collocation method for solving the small-amplitude long-wave scheme generalized BBM-KdV equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(8): 67-76. |
[8] | ZHANG Ru, HAN Xu, LIU Xiao-gang. Convergence and contractivity of boundary value methods for nonlinear delay differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 97-101. |
[9] | LI Cui-ping, GAO Xing-bao. A neural network for solving l1-norm problems with constraints [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 90-98. |
[10] | CAO Wei-dong, DAI Tao, YU Jin-biao, WANG Xiao-hong, SHI An-feng. Improvement on the solution of pressure equation based on alternating direction in chemical flooding model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 88-94. |
[11] | DING Feng-xia, CHENG Hao. A posteriori choice rule for the mollification regularization parameter for the Cauchy problem of an elliptic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 18-24. |
[12] | . Interval algorithm for mixed integer nonlinear two-level programming problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 9-17. |
[13] | KONG Yi-ting, WANG Tong-ke. The steepest descent method for Fourier integrals involving algebraic and logarithmic singular factors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 50-55. |
[14] | YU Jin-biao, REN Yong-qiang, CAO Wei-dong, LU Tong-chao, CHENG Ai-jie, DAI tao. Expanded mixed finite element method for compressible miscible displacement in heterogeneous porous media [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 25-34. |
[15] | SHI Zhang-lei, LI Wei-guo. A† graded hard thresholding pursuit algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 58-64. |
|