JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (3): 107-115.doi: 10.6040/j.issn.1671-9352.0.2023.541

Previous Articles     Next Articles

Test of parameter change point in RCA(1)model based on LSCUSUM method

HOU Chengting1, CHEN Zhanshou1,2*   

  1. 1. School of Mathematics and Statistics, Qinghai Normal University, Xining 810008, Qinghai, China;
    2. The State Key Labora-tory of Tibetan Intelligent Information Processing and Application Jointly Built by Qinghai Normal University, Xining 810008, Qinghai, China
  • Published:2025-03-10

Abstract: The parameter change point problem of the first-order random coefficient autoregressive(RCA(1))model is studied, and a location and scale based cumulative sum(LSCUSUM)test statistic is proposed to test the parameter change points. Under the null hypothesis of no change points, the convergence of the LSCUSUM statistic to the upper bound of the Brownian bridge is derived. Consistency of the method is established under the alternative hypothesis. Numerical simulation results demonstrate that the introduced LSCUSUM method effectively controls the empirical level. Furthermore, compared to existing methods for testing parameter change points in RCA(1)models, the proposed approach exhibits an enhanced empirical power. Finally, the method is applied to analyze daily closing data of Dongjing electronics stock, and detect the change points within the dataset.

Key words: random coefficient model, LSCUSUM test, parameter change point, change point test

CLC Number: 

  • O212.1
[1] 陈占寿. 基于Bootstrap方法的时间序列变点检测[M]. 北京:科学出版社,2020. CHEN Zhanshou. Time series change point detection based on Bootstrap method[M]. Beijing: Science Press, 2020.
[2] INCLANC, TIAOG C. Use of cumulative sums of squares for retrospective detection of changes of variance[J]. Journal of the American Statistical Association, 1994, 89(427):913-923.
[3] KIM S, CHO S, LEE S. On the CUSUM test for parameter changes in GARCH(1, 1)models[J]. Communications in Statistics: Theory and Methods, 2000, 29(2):445-462.
[4] LEE S, HA J, NA O, et al. The CUSUM test for parameter change in time series models[J]. Scandinavian Journal of Statistics, 2003, 30(4):781-796.
[5] BERKES I, HORVTH L, KOKOSZKA P. Testing for parameter constancy in GARCH(p,q)models[J]. Statistics & Probability Letters, 2004, 70(4):263-273.
[6] GOMBAY E. Change detection in autoregressive time series[J]. Journal of Multivariate Analysis, 2008, 99(3):451-464.
[7] KANG J, LEE S. Parameter change test for Poisson autoregressive models[J]. Scandinavian Journal of Statistics, 2014, 41(4):1136-1152.
[8] LEE S, TOKUTSU Y, MAEKAWA K. The CUSUM test for parameter change in regression models with ARCH errors[J]. Journal of the Japan Statistical Society, 2004, 34(2):173-188.
[9] LEE J, LEE S. Parameter change test for nonlinear time series models with GARCH type errors[J]. Journal of Korean Mathematical Society, 2015, 52(3):503-522.
[10] OH H, LEE S. On score vector- and residual-based CUSUM tests in ARMA-GARCH models[J]. Statistical Methods and Applications, 2018, 27(3):385-406.
[11] OH H, LEE S. Modified residual CUSUM test for location-scale time series models with heteroscedasticity[J]. Annals of the Institute of Statistical Mathematics, 2019, 71(5):1059-1091.
[12] LEE S. Location and scale-based CUSUM test with application to autoregressive models[J]. Journal of Statistical Computation and Simulation, 2020, 90(13):2309-2328.
[13] LEE S, LEE S, MOON M. Hybrid change point detection for time series via support vector regression and CUSUM method[J]. Applied Soft Computing, 2020, 89:106101.
[14] RI Xihame, CHEN Zhanshou, LIANG Yan. Detecting structural change point in ARMA models via neural network regression and LSCUSUM methods[J]. Entropy, 2023, 25(1):133.
[15] AUE A. Strong approximation for RCA(1)time series with applications[J]. Statistics and Probability Letters, 2004, 68(4): 369-382.
[16] NA O, LEE J, LEE S. Monitoring parameter changes for random coefficient autoregressive models[J]. Journal of the Korean Statistical Society, 2010, 39(3):281-288.
[17] ZHAO Zhiwen, WANG Dehui, PENG Cuixin. Test for parameter changes in generalized random coefficient autoregressive model[J]. Journal of Inequalities and Applications, 2014, 2014(1):309.
[18] 李拂晓,田铮,陈占寿. 随机系数自回归模型变均值点在线监测与应用[J]. 控制理论与应用,2012,29(4):497-502. LI Fuxiao, TIAN Zheng, CHEN Zhanshou. Online monitoring of mean change point in a random coefficient autoregressive model[J]. Control Theory & Applications, 2012, 29(4):497-502.
[19] LI Fuxiao, TIAN Zheng, QI Peiyan, et al. Monitoring parameter changes in RCA(p)models[J]. Journal of the Korean Statistical Society, 2015, 44(1):111-122.
[20] 韩四儿,田铮,武新乾. 一类股市波动性预测模型的多变点检验[J]. 系统工程理论与实践,2006,26(3):94-101. HAN Sier, TIAN Zheng, WU Xinqian. Multiple change point test of a volatility forecasting models in the stock market[J]. Systems Engineering: Theory & Practice, 2006, 26(3):94-101.
[1] Cuiyun ZHANG,Jingjun GUO,Aiqin MA. Parameter estimation for the sub-fractional Vasicek model based on discrete observation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 15-26.
[2] NIANG Mao-cuo, CHEN Zhan-shou, CHENG Shou-yao, WANG Xiao-yang. Online monitoring of parameter changes in linear regression model with long memory errors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(4): 91-99.
[3] REN Peng-cheng, XU Jing, LI Xin-min. Interval estimation of VaR [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 85-90.
[4] WANG Xiao-huan, LÜ Guang-ying, DAI Li-jie. Generalization of Gronwalls inequality and applications [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 94-101.
[5] ZHANG Xian-you, LI Dong-xi. A Bayesian approach for variable selection using spike-and-slab prior distribution [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(12): 84-93.
[6] DUAN Ticheng, XU Chengkai, LU Zijie, JIA Peiyan, XIE Suya, YANG Wenzhi. Least squares estimator of the first-order and mildly explosive autoregression with mixing errors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(3): 77-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[2] XIE Yun-long,DU Ying-ling . Function S-rough sets and integral metric of laws[J]. J4, 2007, 42(10): 118 -122 .
[3] LI Zhi-Chao, FU Gong-Fei. The dynamic finite element method with characteristics for convectiondominated diffusion problems[J]. J4, 2009, 44(8): 90 -96 .
[4] XU Chun-hua,GAO Bao-yu,LU Lei,XU Shi-ping,CAO Bai-chuan,YUE Qin-yan and ZHANG Jian . Study of chemically enhanced primary treatment of wastewater received by urban rivers[J]. J4, 2006, 41(2): 116 -120 .
[5] CHEN Hong-yu1, ZHANG Li2. The linear 2-arboricity of planar graphs without 5-, 6-cycles with chord[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 26 -30 .
[6] HUANG Xian-li,LUO Dong-mei. Feature impprtance study on  transfer learning of  sentiment  text  classification[J]. J4, 2010, 45(7): 13 -17 .
[7] GAO Zheng-hui, LUO Li-ping. Philos-type oscillation criteria for third-order nonlinear functional differential equations with distributed delays and damped terms[J]. J4, 2013, 48(4): 85 -90 .
[8] LI Zhi-rong . Computational formulae of generalized m-th-order Bell numbers and generalized m-order orderd Bell numbers[J]. J4, 2007, 42(2): 59 -63 .
[9] LIANG Xiao, WANG Linshan. Global attractor of a class of recurrent neural network with Stype distributed delays[J]. J4, 2009, 44(4): 57 -60 .
[10] DONG Xin-mei . On problems of Suryanarayana[J]. J4, 2007, 42(2): 83 -86 .