JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (3): 69-76.doi: 10.6040/j.issn.1671-9352.0.2024.084
Previous Articles Next Articles
ZHOU Xiaoying1,2, JI Chen1, TU Xiaoyi1*
CLC Number:
[1] HUDSON D J. Fitting segmented curves whose join points have to be estimated[J]. Journal of the American Statistical Association, 1966, 61(316):1097-1129. [2] ROBISON D E. Estimates for the points of intersection of two polynomial regressions[J]. Journal of the American Statistical Association, 1964, 59(305):214-224. [3] FEDER P I. The log likelihood ratio in segmented regression[J]. The Annals of Statistics, 1975, 3(1):84-97. [4] CHAPPELL R. Fitting bent lines to data, with applications to allometry[J]. Journal of Theoretical Biology, 1989, 138(2):235-256. [5] JONES M C, HANDCOCK M S. Determination of anaerobic threshold: what anaerobic threshold?[J]. The Canadian Journal of Statistics, 1991, 19(2):236-239. [6] HANSEN B E. Inference when a nuisance parameter is not identified under the null hypothesis[J]. Econometrica, 1996, 64(2):413-430. [7] BAI Jushan. Likelihood ratio tests for multiple structural changes[J]. Journal of Econometrics, 1999, 91(2):299-323. [8] LERMAN P M. Fitting segmented regression models by grid search[J]. Journal of the Royal Statistical Society Series C: Applied Statistics, 1980, 29(1):77-84. [9] MUGGEO V M. Estimating regression models with unknown break-points[J]. Statistics in Medicine, 2003, 22(19):3055-3071. [10] LEE S, SEO M H, SHIN Y. Testing for threshold effects in regression models[J]. Journal of the American Statistical Association, 2011, 106(493):220-231. [11] 蒋家坤,林华珍,蒋靓,等. 门槛回归模型中门槛值和回归参数的估计[J]. 中国科学(数学),2016,46(4):409-422. JIANG Jiakun, LIN Huazhen, JIANG Liang, et al. Estimation of threshold values and regression parameters in threshold regression model[J]. SCIENTIA SINICA Mathematica, 2016, 46(4):409-422. [12] PASTOR R, GUALLAR E. Use of two-segmented logistic regression to estimate change-points in epidemiologic studies[J]. American Journal of Epidemiology, 1998, 148(7):631-642. [13] ZHANG Feipeng, YANG Jiejing, LIU Lei, et al. Generalized linear-quadratic model with a change point due to a covariate threshold[J]. Journal of Statistical Planning and Inference, 2022, 216:194-206. [14] KOENKER R, BASSETT G. Regression quantiles[J]. Journal of the Econometric Society, 1978, 46(1):33-50. [15] LI Chenxi, WEI Ying, CHAPPELL R, et al. Bent line quantile regression with application to an allometric study of land mammals speed and mass[J]. Biometrics, 2011, 67(1):242-249. [16] FERGUSON R, WILKINSON W, HILL R. Electricity use and economic development[J]. Energy Policy, 2000, 28(13):923-934. [17] WOLDE-RUFAEL Y. Electricity consumption and economic growth: a time series experience for 17 African countries[J]. Energy Policy, 2006, 34(10):1106-1114. [18] ZHOU Xiaoying, ZHANG Feipeng. A new estimation method for continuous threshold expectile model[J]. Communications in Statistics: Simulation and Computation, 2018, 47(8):2486-2498. [19] ZHANG Feipeng, ZHENG Shenglin, ZHOU Xiaoying. Bent-cable quantile regression model[J]. Communications in Statistics: Simulation and Computation, 2023, 52(5):2000-2011. [20] 周小英. 逐段连续线性分位数回归模型的统计推断及其应用[D]. 长沙:湖南大学,2018. ZHOU Xiaoying. Statistical inference and application in continuous threshold linear quantile regression model[D]. Changsha: Hunan University, 2018. |
[1] | HOU Chengting, CHEN Zhanshou. Test of parameter change point in RCA(1)model based on LSCUSUM method [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(3): 107-115. |
[2] | LI Xuewen, FENG Kexin, WANG Xiaogang. Estimation of multiple change points for censored quantile regression model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(2): 96-104. |
[3] | Qi GAO,Hongshuai DAI,Yanhua WU. MPEWMA chart for detecting tandem queuing network [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 104-110, 117. |
[4] | Xiaogang WANG,Kexin FENG. Change point estimation of piecewise linear censored quantile regression model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 35-44. |
[5] | NIANG Mao-cuo, CHEN Zhan-shou, CHENG Shou-yao, WANG Xiao-yang. Online monitoring of parameter changes in linear regression model with long memory errors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(4): 91-99. |
[6] | WANG Xiao-gang, LI Bing. Piecewise linear Tobit regression model estimation based on kernel function method [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 1-9. |
|