JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (01): 81-84.doi: 10.6040/j.issn.1671-9352.0.2014.198
Previous Articles Next Articles
WANG Long-tao1,2, YANG Xiu-ping1,2, LIU Qing2, YANG Wen-jing3, FAN Zhen-min2, ZHANG Chun-qiu2
CLC Number:
[1] VAN C Mow, MARK H Holmes, LAI W Michael. Fluid transport and mechanical properties of articular cartilage: A review[J]. Journal of Biomechanics, 1984, 17(5):377-394. [2] QUINN T M, MOREL V, MEISTER J J. Static compression of articular cartilage can reduce solute diffusivity and partitioning: Implications for the chondrocyte biological response[J]. Biomedical Engineering Laboratory, Swiss Federal Institute of Technology, 2001, 34(11):1463-1469. [3] PALMOSKI M, PERRICONE E, BRANDT K D. Development and reversal of a proteoglycan aggregation defect in normal canine knee cartilage after immobilization[J]. Arthritis Rheum, 1979, 22:508-517. [4] TAMMI M, SAAMANEN A M, JAUHIAINEN A, et al. Proteoglycan alterations in rabbit knee articular cartilage following physical exercise and immobilization[J]. Connective Tissue Res, 1983, 11:45-55. [5] KIVIRANTA I, JURVELIN J, TAMMI M, et al. Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs[J]. Arthritis & Rheumatism, 1987, 30:801-809. [6] SAH R L Y, KIM Y J, DOONG J Y H, et al. Biosynthetic response of cartilage explants to dynamic compression[J]. J Orthop Res, 1989, 7:619-636. [7] KIM Y J, SAH R L Y, GRODZINSKY A J, et al. Mechanical regulation of cartilage biosynthetic behavior: physical stimuli [J]. Arch Biochem Biophys, 1994, 311:1-12. [8] BONASSAR L J, GRODZINSKY A J, FRANK E H, et al. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I [J]. J Orthop Res, 2001, 19:11-17. [9] QUINN T M, GRODZINSKY A J, BUSCHMANN M D, et al. Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants[J]. J Cell Sci, 1998, 111:573-583. [10] KIM Y J, BONASSAR L J, GRODZINSKY A J. The role of cartilage streaming potential, fluid flow, and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression[J]. Journal of Biomechanics,1995, 28:1055-1066. [11] EVANS ROBIN C, QUINN T M. Dynamic compression augments interstitial transport of a glucose-like solute in articular cartilage [J]. Biophysical Journal, 2006, 91(4): 1541-1547. [12] LI Yang, FRANK E H, WANG Yang, et al. Moderate dynamic compression inhibits pro-catabolic response of cartilage to mechanical injury, tumor necrosis factor-alpha and interleukin-6, but accentuates degradation above a strain threshold [J]. Osteoarthritis and Cartilage, 2013, 21(12):1933-1941. [13] EVANS ROBIN C, QUINN T M. Solute convection in dynamically compressed cartilage[J]. Journal of Biomechanics, 2006, 39:1048-1055. [14] 张春秋,樊瑜波,孙明林,等. 构建关节软骨的滚压加载装置[J]. 中国组织工程研究与临床康复,2010, 14(15):2688-2691. ZHANG Chunqiu, FAN Yubo, SUN Minglin, et al. A rolling depression loading device for articular cartilage construction[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(15):2688-2691. [15] ARKILL K P, WINLOVE C P. Solute transport in the deep and calcified zones of articular cartilage[J]. Osteoarthritis and Cartilage, 2008, 16(6):708-714. [16] ARKILL K P, WINLOVE C P. Fatty acid transport in articular cartilage [J]. Arch Biochem Biophys, 2006, 456(1):71-78. [17] CRANK J. The Mathematics of Diffusion [M]. 2nd. Oxford: Clarendon Press, 1975. |
|