JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (2): 73-82.doi: 10.6040/j.issn.1671-9352.0.2017.313

Previous Articles     Next Articles

The projective objects in the category of Q-sup-algebras

WANG Hai-wei, ZHAO Bin*   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Received:2017-06-21 Online:2018-02-20 Published:2018-01-31

Abstract: The concept of K-flat projective objects in the category of Q-sup-algebras is introduced, and we give some equivalent characterizations on the object. We prove that Q is a K-flat projective Q-sup-algebra if and only if Q has a coalgebra structure.

Key words: coalgebra, Q-sup-algebra, K-flat projective object

CLC Number: 

  • O153.1
[1] BANASCHEWSKI B. Projective frames: a general view [J]. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 2005, 46(4): 301-312.
[2] PASEKA J. Projective quantales: a general view[J]. International Journal of Theoretical Physics, 2008, 47(1): 291-296.
[3] RESENDE P. Tropological systems and observational logic in concurrency and specification[D]. Gompo Grande: Universidade Técnica de Lisboa, 1997.
[4] PASEKA J. Projective sup-algebras: a general view[J]. Topology and its Applications, 2008, 155(4): 308-317.
[5] ZHANG Xia, LAAN Valdis. Quotients and subalgebras of sup-algebras[J]. Proceedings of the Estonian Academy of Sciences, 2015, 64(3): 311-322.
[6] BĚLOHLÁVEK R. Fuzzy relational systems: foundations and principles[M]. New York: Kluwer Academic Publishers, 2002.
[7] FAN Lei. A new approach to quantitative domain theory[J]. Electronic Notes in Theoretical Computer Science, 2001, 45(1): 77-87.
[8] YAO Wei, LU Lingxia. Fuzzy Galois connections on fuzzy posets[J]. Mathematical Logic Quarterly, 2009, 55(1): 105-112.
[9] ZHANG Qiye, FAN Lei. Continuity in quantitative domains[J]. Fuzzy Sets and Systems, 2005, 154(1): 118-131.
[10] ADÁMEK J, HERRLICH H, STRECKER G E. Abstract and concrete categories[M]. New York: Wiley Interscience, 1990.
[11] GIERZ G, HOFMANN K H, KEIMEL K, et al. Continuous lattices and domains[M]. Cambridge: Cambridge University Press, 2003.
[12] ROSENTHAL K I. Quantales and their applications[M]. New York: Longman Scientific & Technical, 1990.
[13] BLOOM S L. Varieties of ordered algebras[J]. Journal of Computer and System Sciences, 1976, 13(2): 200-212.
[14] YAO Wei. Quantitative domains via fuzzy sets: part I: continuity of fuzzy directed complete posets[J]. Fuzzy Sets and Systems, 2010, 161(7): 973-987.
[1] FU Xue-rong, YAO Hai-lou. Tilting comodules over triangular matrix coalgebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 25-29.
[2] XU Ai-min. On Gorenstein injective comodules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 7-9.
[3] WANG Zheng-ping, YANG Ren-ming. Cleft extensions of weak Hopf group coalgebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 121-126.
[4] CHEN Hua-xi, ZHANG Cui-bin, DONG Li-hong. Kegel theorem for generalized Lie algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 38-44.
[5] CHEN Hua-xi1, YIN Xiao-bin2. The Duality of a Hopf π-Comodule Coalgebra [J]. J4, 2011, 46(12): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!