JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (2): 65-72.doi: 10.6040/j.issn.1671-9352.0.2017.508

Previous Articles     Next Articles

On(∈,∈∨q(λ, μ))-fuzzy LI-ideals in lattice implication algebras

LIU Chun-hui   

  1. Department of Mathematics and Statistics, Chifeng University, Chifeng 024001, Inner Mongolia, China
  • Received:2017-09-27 Online:2018-02-20 Published:2018-01-31

Abstract: Firstly, the notion of (∈,∈∨q(λ, μ))-fuzzy LI-ideals in lattice implication algebras is further studied, and some new properties and equivalent characterizations of (∈,∈∨q(λ, μ))-fuzzy LI-ideals are given. Secondly, a partial order is defined on the set of all fuzzy sets in a given lattice implication algebra L, the definition of (∈,∈∨q(λ, μ))-fuzzy LI-ideal which is generated by a fuzzy set is given and its representation theorem is established by using. Finally, It is proved that the set consisting of all (∈,∈∨q(λ, μ))-fuzzy LI-ideals with respect to a fixed pair(λ, μ)in a given lattice implication algebra, under the partial order, forms a complete distributive lattice.

Key words: distributive lattice, lattice implication algebra, complete lattice, lattice-valued logic, (∈,∈∨q(λ, μ))-fuzzy LI-ideal

CLC Number: 

  • O141.1
[1] BORNS D W, MACK J M. An algebraic introduction on mathematical logic[M]. Berlin: Springer, 1975.
[2] GOGUEN J A. The logic of inexact concepts[J]. Synthese, 1969, 19:325-373.
[3] PAVELKA J. On fuzzy logic I, II, III[J]. Zeitschr Math Logik Grundlag Math, 1979, 25(1):45-52; 119-134; 447-464.
[4] NOVAK V. First-order fuzzy logic[J]. Studia Logic, 1982, 46(1):87-109.
[5] BOLC L, BOROWIK P. Many-valued Logics[M]. Berlin: Springer, 1992.
[6] 徐扬. 格蕴涵代数[J]. 西南交通大学学报, 1993, 28(1):20-27. XU Yang. Lattice implication algebras[J]. Journal of Southwest Jiaotong University, 1993, 28(1):20-27.
[7] XU Yang, RUAN D, QIN Keyun, et al. Lattice-valued logic[M]. Berlin: Springer, 2004.
[8] JUN Y B, ROH E H, XU Yang. LI-ideals in lattice implication algebras[J]. Bull Korean Math Soc, 1998, 35:13-24.
[9] LIU Yonglin, LIU Ssanyang, XU Yang, et al. ILI-ideals and prime LI-ideals in lattice implication algebras[J]. Information Sciences, 2003, 155:157-175.
[10] 刘春辉. 格蕴涵代数的LI-理想格及其素元刻画[J]. 高校应用数学学报(A辑), 2014, 29(4):475-482. LIU Chunhui. LI-ideals lattice and its prime elements characterizations in a lattice implication algebra[J]. Applied Mathematics A Journal of Chinese Universities(Series A), 2014, 29(4):475-482.
[11] 刘春辉. 格蕴涵代数的扩展LI-理想[J]. 高校应用数学学报(A辑), 2015, 30(3):306-320. LIU Chunhui. Extended LI-ideals in lattice implication algebras[J]. Applied Mathematics A Journal of Chinese Universities(Series A), 2015, 30(3):306-320.
[12] JUN Y B, XU Yang. Fuzzy LI-ideals and in lattice implication algebras[J]. J Fuzzy Math, 1999, 7(4):997-1003.
[13] PENG Jiayin.(∈,∈∨q)-fuzzy LI-ideals in lattice implication algebras[J]. Lecture Notes in Electrical Engineering, 2012, 135:221-226.
[14] 刘春辉, 徐罗山. 格蕴涵代数的(∈,∈∨q[k] )-fuzzy LI-理想[J]. 纯粹数学与应用数学, 2011, 27(3):363-376. LIU Chunhui, XU Luoshan.(∈,∈∨q[k] )-fuzzy LI-ideals in lattice implication algebras[J]. Pure and Applied Mathematics, 2011, 27(3):363-376.
[15] 傅小波, 廖祖华, 郑高平, 等. 格蕴涵代数的(∈,∈∨q(λ, μ))-模糊LI-理想[J]. 模糊系统与数学, 2014, 28(5):41-50. FU Xiaobo, LIAO Zuhua, ZHENG Gaoping, et al.(∈,∈∨q(λ, μ))-fuzzy LI-ideals in lattice implication algebras[J]. Fuzzy Systems and Mathematics, 2014, 28(5):41-50.
[1] SHAO Yong. Semilattice-ordered completely regular periodic semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 1-5.
[2] LIU Chun-hui. Lattice of(,∨(-overq))-fuzzy filters in a BL-algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 104-110.
[3] PENG Jia-yin. [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 119-126.
[4] LU Tao, WANG Xi-juan, HE Wei. An equivalent characterization of the choice axiom in a Topos [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 54-57.
[5] SHEN Chong, YAO Wei. A one-to-one correspondence between fuzzy G-ideals and fuzzy Galois connections on fuzzy complete lattices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(04): 36-41.
[6] LU Jing, ZHAO Bin. The projective objects in the category of fuzzy quantales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 47-54.
[7] ZHOU Yi-hui1, MA Jue2. The products and coproducts in the category of fuzzy complete lattices [J]. J4, 2012, 47(8): 122-126.
[8] WANG Yi-rui1, LI Sheng-gang2. Quasi-uniformities and topologies on a finite set [J]. J4, 2011, 46(8): 80-83.
[9] XIE Wei-qi1,2, LIU Dao-guang1, ZHANG Li2. The algebraic properties of internal P-sets [J]. J4, 2011, 46(3): 69-72.
[10] QIAO Xi-min1,2, WU Hong-bo1*. The representation theorem of lattice BR0-algebraic structure [J]. J4, 2010, 45(9): 38-42.
[11] ZHANG Li-mei1,2. M-P inverses and weighted M-P inverses of matrices over a distributive lattice [J]. J4, 2010, 45(12): 33-39.
[12] ZHONG Xiao-jing, LI Sheng-gang and SU Hua-fei . Pre-topologies and pre-convergence classes of family of nets [J]. J4, 2007, 42(8): 62-66 .
[13] YANG Xiao-fei,LI Sheng-gang* . Pre-derived operators, pre-difference derived operators and pre-topologies [J]. J4, 2007, 42(12): 55-57 .
[14] LIU Hong-xing . A strong distributive lattice of quotient semirings [J]. J4, 2006, 41(6): 43-45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!