JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (3): 63-70.doi: 10.6040/j.issn.1671-9352.2.2017.294
Previous Articles Next Articles
LIU Ming-ming, ZHANG Min-qing, LIU Jia, GAO Pei-xian
CLC Number:
[1] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C] // Advances in Neural Information Processing Systems 25. Curran Associates: NIPS, 2012: 1097-1105. [2] FRIDRICH J, KODOVSKY J. Rich models for steganalysis of digital images[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3):868-882. [3] CHANG Chihchung, LIN Chihjen. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems & Technology, 2011, 2(3):1-27. [4] KODOVSKY J, FRIDRICH J, HOLUB V. Ensemble classifiers for steganalysis of digital media[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(2):432-444. [5] QIAN Yinlong, DONG Jing, WANG Wei, et al. Deep learning for steganalysis via convolutional neural networks[C] // Proceedings of SPIE Media Watermarking, Security, and Forensics. San FranciscoL: SPIE. 2015: 9409:94090J-94090J-10. [6] BAS P, FILLER T, PEVNY T. Break our steganographic system: the ins and outs of organizing BOSS[J]. Journal of the American Statistical Association, 2011, 96:488-499. [7] PEVNY T, FILLER T, BAS P. Using high-dimensional image models to perform highly undetectable steganography[C] // Proceedings of the 12th International Conference on Information Hiding. Calgary:[s.n.] , 2010: 161-177. [8] HOLUB V, FRIDRICH J. Designing steganographic distortion using directional filters[C] // Proceedings of the IEEE International Workshop on Information Forensics and Security. Tenerife:[s.n.] , 2013: 234-239. [9] HOLUB V, FRIDRICH J, DENEMARK T. Universal distortion function for steganography in an arbitrary domain[J]. Eurasip Journal on Information Security, 2014, 2014(1):1. DOI:10.1186/1687-417X-2014-1. [10] XU Guanshuo, WU Hanzhou, SHI Yunqing. Structural design of convolutional neural networks for steganalysis[J]. IEEE Signal Processing Letters, 2016, 23(5):708-712. [11] LI Bin, WANG Ming, HUANG Jiwu, et al. A new cost function for spatial image steganography[C] // IEEE International Conference on Image Processing.[S.l.] :[s.n.] , 2014: 4206-4210. [12] IOFFE S, SZEGEDY C. Batch normalization: accelerating deepnetwork training by reducing internal covariate shift[J]. OALib Journal, 2015, 3:448-456. arXiv:1502.03167. [13] PIBRE L, PASQUET J, IENCO D, et al. Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover source-mismatch[J]. Electronic Imaging, 2016, 4(8):1-11. |
[1] | XIAO Wei-ming, WANG Gui-jun. Design and approximation of SISO three layers feedforward neural network based on Bernstein polynomials [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 55-61. |
[2] | PANG Bo, LIU Yuan-chao. Fusion of pointwise and deep learning methods for passage ranking [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 30-35. |
[3] | QIN Jing, LIN Hong-fei, XU Bo. Music retrieval model based on semantic descriptions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(6): 40-48. |
[4] | WANG Chang-hong, WANG Lin-shan. Mean square exponential stability of memristor-based stochastic neural networks with S-type distributed delays [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(5): 130-135. |
[5] | ZHEN Yan, WANG Lin-shan. Mean square exponential stability analysis of stochastic generalized cellular neural networks with S-type distributed delays [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 60-65. |
[6] | LIU Ming, ZAN Hong-ying, YUAN Hui-bin. Key sentiment sentence prediction using SVM and RNN [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 68-73. |
[7] | YANG Yang, LIU Long-fei, WEI Xian-hui, LIN Hong-fei. New methods for extracting emotional words based on distributed representations of words [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 51-58. |
[8] | DU Xi-hua, SHI Xiao-qin, FENG Chang-jun, LI Liang. rediction of chromatograph retention index by artificial neural network by #br# study on volatile constituents of wild chinese chives [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(1): 50-53. |
[9] | MA Kui-sen, WANG Lin-shan*. Exponential synchronization of stochastic BAM neural networks with#br# S-type distributed delays [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 73-78. |
[10] | CHANG Qing, ZHOU Li-qun*. Global uniform asymptotic stability of a class of delayed cellular neural networks [J]. J4, 2012, 47(8): 42-49. |
[11] | FENG Xin-ying1,2, JI Hua1,2, ZHANG Hua-xiang1,2. Multi-label RBF neural networks learning algorithm based on clustering optimization [J]. J4, 2012, 47(5): 63-67. |
[12] | DUAN Chen-xia1, SUN Gang2, WANG Gui-jun1*. Universal approximation of three-layer regular fuzzy neural networks for a class of functions [J]. J4, 2012, 47(3): 81-86. |
[13] | ZHANG Wei-wei1, WANG Lin-shan2*. Global exponential robust stability of stochastic interval cellularneural networks with S-type distributed delays [J]. J4, 2012, 47(3): 87-92. |
[14] | HUANG Zu-da, PENG Le-qun, XU Min. On anti-periodic solutions for high-order cellular neural networks model with timevarying delays [J]. J4, 2012, 47(10): 121-126. |
[15] | JIANG Jia-tao, LIU Zhi-jie*, XIE Xiao-yao. Based on integrated fuzzy-neural network intrusion detection model [J]. J4, 2011, 46(9): 95-98. |
|