JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (6): 40-48.doi: 10.6040/j.issn.1671-9352.0.2017.059

Previous Articles     Next Articles

Music retrieval model based on semantic descriptions

QIN Jing1,2, LIN Hong-fei1*, XU Bo1   

  1. 1. School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China;
    2. College of Information Engineering, Dalian University, Dalian 116622, Liaoning, China
  • Received:2017-02-20 Online:2017-06-20 Published:2017-06-21

Abstract: Query by semantic description(QBSD)is a natural way to retrieve and discovery relevant music based on semantic contents and users’ subjective feelings. A QBSD system can be defined as a supervised multi-class labeling(SML)model for bridging the semantic gaps, by which a song could be tagged using semantic labels and mapped into semantic spaces. In this paper, we propose a method for querying by semantic description based on the SML model, in which a song represented as a semantic vector could be used as a query, and retrieved within the tagged music dataset. The resulted song list contains most similar songs in the semantic space. A convolutional neural network is also integrated into the SML model. The experiments show that the proposed method could obtain relevant pieces of music in the same semantic space effectively and efficiently.

Key words: convolutional neural network, music retrieval, query by semantic description, supervised Multi-class labeling

CLC Number: 

  • TP391
[1] 比达网.2016上半年度手机音乐市场研究报告[EB/OL].[2016-06-12].http://www.bigdata-research.cn/content/201606/285.html.
[2] NANOPOULOS A, RAFAILIDIS D, RUXANDA M M, et al. Music search engines: specifications and challenges[J]. Information Processing & Management, 2009, 45(3):392-396.
[3] KARATZOGLOU A, AMATRIAIN X, BALTRUNAS L, et al. Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering[C] // Proceedings of the fourth ACM conference on Recommender systems(RecSys '10). New York: ACM, 2010: 79-86.
[4] CELMA O. Music recommendation and discovery[J]. Media, 2015, 11(1):7-8.
[5] JAWAHEER G, SZOMSZOR M, KOSTKOVA P. Comparison of implicit and explicit feedback from an online music recommendation service[C] // Proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems(HetRec '10). New York: ACM, 2010: 47-51.
[6] LEVY M, BOSTEELS K. Music recommendation and the long tail[J]. Womrad Workshop on Music Recommendation & Discovery Acm Recsys, 2010, 33(3):1-20.
[7] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C] // International Conference on World Wide Web. New York: ACM, 2001: 285-295.
[8] FBISCHOFF K, FIRAN C S, PAIU R, et al. Music mood and theme classification-a hybrid approach[C] // Proceedings of the 10th International Society for Music Information Retrieval Conference(ISMIR 2009). [S.l.] : DBLP, 2009: 657-662.
[9] SORDO M, GOUYON F, SARMENTO L, et al. Inferring semantic facets of a music Folksonomy with Wikipedia[J]. Journal of New Music Research, 2013, 42(4):346-363.
[10] SCHEDL M, WIDMER G, KNEES P, et al. A music information system automatically generated via web content mining techniques[J]. Information Processing & Management, 2011, 47(3):426-439.
[11] CASEY M A, VELTKAMP R, GOTO M, et al. Content-based music information retrieval: current directions and future challenges[J]. Proceedings of the IEEE, 2008, 96(4):668-696.
[12] WANG J, DENG H, YAN Q, et al. A collaborative model of low-level and high-level descriptors for semantics-based music information retrieval[C] // IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. Piscataway: IEEE, 2008: 532-535.
[13] BUCCOLI M, GALLO A, ZANONI M, et al. A dimensional contextual semantic model for music description and retrieval[C] // International Conference on Acoustics Speech and Signal Processing(ICASSP). New York: IEEE, 2015: 673-677.
[14] BUCCOLI M, ZANONI M, SARTI A, et al. A music search engine based on semantic text-based query[C] // IEEE International Workshop on Multimedia Signal Processing. New York: IEEE, 2013: 254-259.
[15] MIOTTO R, LANCKRIET G. A generative context model for semantic music annotation and retrieval[J]. IEEE Transactions on Audio Speech & Language Processing, 2012, 20(4):1096-1108.
[16] TURNBULL D R, BARRINGTON L, LANCKRIET G, et al. Combining audio content and social context for semantic music discovery[C] // Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: Assoc Computing Machinery, 2009: 387-394.
[17] SAARI P, EEROLA T. Semantic computing of moods based on tags in social media of music[J]. IEEE Transactions on Knowledge & Data Engineering, 2013, 26(10):2548-2560.
[18] SU J H, WANG C Y, CHIU T W, et al. Semantic content-based music retrieval using audio and fuzzy-music-sense features[C] // IEEE International Conference on Granular Computing. New York: IEEE, 2014: 259-264.
[19] FOSTER P, MAUCH M, DIXON S. Sequential complexity as a descriptor for musical similarity [J]. Processing IEEE/ACM Transactions on Audio Speech & Language, 2014, 22(12):1965-1977.
[20] TURNBULL D, BARRINGTON L, TORRES D, et al. Semantic annotation and retrieval of music and sound effects[J]. IEEE Transactions on Audio Speech & Language Processing, 2008, 16(2):467-476.
[21] LEE H, PHAM P T, YAN L, et al. Unsupervised feature learning for audio classification using convolutional deep belief networks[C] // Advances in Neural Information Processing Systems.[S.l.] : DBLP, 2009: 1096-1104.
[22] FROME A, CORRADO G S, SHLENS J, et al. DeViSE: a deep visual-semantic embedding model[C] // Proceedings of the 26th International Conference on Neural Information Processing Systems(NIPS'13).[S.l.] : Curran Associates Inc, 2013: 2121-2129.
[23] NODA K, YAMAGUCHI Y, NAKADAI K, et al. Audio-visual speech recognition using deep learning[J]. Applied Intelligence, 2015, 42(4):722-737.
[24] HAMEL P, ECK D. Learning features from music audio with deep belief networks[C] // International Society for Music Information Retrieval Conference.[S.l.] : DBLP, 2010: 339-344.
[25] DIELEMAN S, BRAKEL P, SCHRAUWEN B. Audio-based music classification with a pretrained convolutional network[C] // Proceedings of the 12th International Society for Music Information Retrieval Conference(ISMIR 2011). [S.l.] : DBLP, 2011: 669-674.
[26] 胡振, 傅昆, 张长水. 基于深度学习的作曲家分类问题[J]. 计算机研究与发展, 2014, 51(9):1945-1954. HU Zhen, FU Kun, ZHANG Changshui. Audio classical composer identification by deep neural network[J]. Journal of Computer Research and Development, 2014, 51(9):1945-1954.
[27] HUMPHREY E J, CHO T, BELLO J P. Learning a robust Tonnetzspace transform for automatic chord recognition[C] // Proceedings of the 37th IEEE International Conference on Acoustics, Speech and SignalProcessing(ICASSP). Piscataway: IEEE, 2012: 453-456.
[28] HINTON G, DENG L, YU D, et al. Deep neural networks foracoustic modeling in speech recognition: the shared views offour research groups[J]. Signal Processing Magazine, 2012, 29(6):82-97.
[29] COVIELLO E, CHAN A B, LANCKRIET G. Time series models for semantic music annotation[J]. IEEE Transactions on Audio Speech & Language Processing, 2011, 19(5):1343-1359.
[30] HOFFMAN M D, BLEI D M, COOK P R. Easy as CBA: a simple probabilistic model for tagging music[C] // International Society for Music Information Retrieval Conference.[S.l.] : DBLP, 2010: 369-374.
[31] ECK D, LAMERE P, BERTIN-MAHIEUX T, et al. Automatic generation of social tags for music recommendation[C] // Conference on Neural Information Processing Systems.[S.l.] : DBLP, 2007: 385-392.
[1] GONG Shuang-shuang, CHEN Yu-feng, XU Jin-an, ZHANG Yu-jie. Extraction of Chinese multiword expressions based on Web text [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 40-48.
[2] YU Chuan-ming, ZUO Yu-heng, GUO Ya-jing, AN Lu. Dynamic discovery of authors research interest based on the combined topic evolutional model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 23-34.
[3] . Reader emotion classification with news and comments [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 35-39.
[4] . Design and implementation of topic detection in Russian news based on ontology [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 49-54.
[5] LIAO Xiang-wen, ZHANG Ling-ying, WEI Jing-jing, GUI Lin, CHENG Xue-qi, CHEN Guo-long. User influence analysis of social media with temporal characteristics [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 1-12.
[6] YU Chuan-ming, FENG Bo-lin, TIAN Xin, AN Lu. Deep representative learning based sentiment analysis in the cross-lingual environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 13-23.
[7] ZHANG Jun, LI Jing-fei, ZHANG Rui, RUAN Xing-mao, ZHANG Shuo. Community detection algorithm based on effective resistance of network [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 24-29.
[8] PANG Bo, LIU Yuan-chao. Fusion of pointwise and deep learning methods for passage ranking [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 30-35.
[9] CHEN Xin, XUE Yun, LU Xin, LI Wan-li, ZHAO Hong-ya, HU Xiao-hui. Text feature extraction method for sentiment analysis based on order-preserving submatrix and frequent sequential pattern mining [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 36-45.
[10] WANG Tong, MA Yan-zhou, YI Mian-zhu. Speech recognition of Russian short instructions based on DTW [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 29-36.
[11] ZHANG Xiao-dong, DONG Wei-guang, TANG Min-an, GUO Jun-feng, LIANG Jin-ping. gOMP reconstruction algorithm based on generalized Jaccard coefficient for compressed sensing [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 23-28.
[12] SUN Jian-dong, GU Xiu-sen, LI Yan, XU Wei-ran. Chinese entity relation extraction algorithms based on COAE2016 datasets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 7-12.
[13] WANG Kai, HONG Yu, QIU Ying-ying, WANG Jian, YAO Jian-min, ZHOU Guo-dong. Study on boundary detection of users query intents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 13-18.
[14] ZHANG Fan, LUO Cheng, LIU Yi-qun, ZHANG Min, MA Shao-ping. User preference prediction in heterogeneous search environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 26-34.
[15] YANG Yan, XU Bing, YANG Mu-yun, ZHAO Jing-jing. An emotional classification method based on joint deep learning model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 19-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!