JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (6): 40-48.doi: 10.6040/j.issn.1671-9352.0.2017.059
Previous Articles Next Articles
QIN Jing1,2, LIN Hong-fei1*, XU Bo1
CLC Number:
[1] 比达网.2016上半年度手机音乐市场研究报告[EB/OL].[2016-06-12].http://www.bigdata-research.cn/content/201606/285.html. [2] NANOPOULOS A, RAFAILIDIS D, RUXANDA M M, et al. Music search engines: specifications and challenges[J]. Information Processing & Management, 2009, 45(3):392-396. [3] KARATZOGLOU A, AMATRIAIN X, BALTRUNAS L, et al. Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering[C] // Proceedings of the fourth ACM conference on Recommender systems(RecSys '10). New York: ACM, 2010: 79-86. [4] CELMA O. Music recommendation and discovery[J]. Media, 2015, 11(1):7-8. [5] JAWAHEER G, SZOMSZOR M, KOSTKOVA P. Comparison of implicit and explicit feedback from an online music recommendation service[C] // Proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems(HetRec '10). New York: ACM, 2010: 47-51. [6] LEVY M, BOSTEELS K. Music recommendation and the long tail[J]. Womrad Workshop on Music Recommendation & Discovery Acm Recsys, 2010, 33(3):1-20. [7] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C] // International Conference on World Wide Web. New York: ACM, 2001: 285-295. [8] FBISCHOFF K, FIRAN C S, PAIU R, et al. Music mood and theme classification-a hybrid approach[C] // Proceedings of the 10th International Society for Music Information Retrieval Conference(ISMIR 2009). [S.l.] : DBLP, 2009: 657-662. [9] SORDO M, GOUYON F, SARMENTO L, et al. Inferring semantic facets of a music Folksonomy with Wikipedia[J]. Journal of New Music Research, 2013, 42(4):346-363. [10] SCHEDL M, WIDMER G, KNEES P, et al. A music information system automatically generated via web content mining techniques[J]. Information Processing & Management, 2011, 47(3):426-439. [11] CASEY M A, VELTKAMP R, GOTO M, et al. Content-based music information retrieval: current directions and future challenges[J]. Proceedings of the IEEE, 2008, 96(4):668-696. [12] WANG J, DENG H, YAN Q, et al. A collaborative model of low-level and high-level descriptors for semantics-based music information retrieval[C] // IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. Piscataway: IEEE, 2008: 532-535. [13] BUCCOLI M, GALLO A, ZANONI M, et al. A dimensional contextual semantic model for music description and retrieval[C] // International Conference on Acoustics Speech and Signal Processing(ICASSP). New York: IEEE, 2015: 673-677. [14] BUCCOLI M, ZANONI M, SARTI A, et al. A music search engine based on semantic text-based query[C] // IEEE International Workshop on Multimedia Signal Processing. New York: IEEE, 2013: 254-259. [15] MIOTTO R, LANCKRIET G. A generative context model for semantic music annotation and retrieval[J]. IEEE Transactions on Audio Speech & Language Processing, 2012, 20(4):1096-1108. [16] TURNBULL D R, BARRINGTON L, LANCKRIET G, et al. Combining audio content and social context for semantic music discovery[C] // Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: Assoc Computing Machinery, 2009: 387-394. [17] SAARI P, EEROLA T. Semantic computing of moods based on tags in social media of music[J]. IEEE Transactions on Knowledge & Data Engineering, 2013, 26(10):2548-2560. [18] SU J H, WANG C Y, CHIU T W, et al. Semantic content-based music retrieval using audio and fuzzy-music-sense features[C] // IEEE International Conference on Granular Computing. New York: IEEE, 2014: 259-264. [19] FOSTER P, MAUCH M, DIXON S. Sequential complexity as a descriptor for musical similarity [J]. Processing IEEE/ACM Transactions on Audio Speech & Language, 2014, 22(12):1965-1977. [20] TURNBULL D, BARRINGTON L, TORRES D, et al. Semantic annotation and retrieval of music and sound effects[J]. IEEE Transactions on Audio Speech & Language Processing, 2008, 16(2):467-476. [21] LEE H, PHAM P T, YAN L, et al. Unsupervised feature learning for audio classification using convolutional deep belief networks[C] // Advances in Neural Information Processing Systems.[S.l.] : DBLP, 2009: 1096-1104. [22] FROME A, CORRADO G S, SHLENS J, et al. DeViSE: a deep visual-semantic embedding model[C] // Proceedings of the 26th International Conference on Neural Information Processing Systems(NIPS'13).[S.l.] : Curran Associates Inc, 2013: 2121-2129. [23] NODA K, YAMAGUCHI Y, NAKADAI K, et al. Audio-visual speech recognition using deep learning[J]. Applied Intelligence, 2015, 42(4):722-737. [24] HAMEL P, ECK D. Learning features from music audio with deep belief networks[C] // International Society for Music Information Retrieval Conference.[S.l.] : DBLP, 2010: 339-344. [25] DIELEMAN S, BRAKEL P, SCHRAUWEN B. Audio-based music classification with a pretrained convolutional network[C] // Proceedings of the 12th International Society for Music Information Retrieval Conference(ISMIR 2011). [S.l.] : DBLP, 2011: 669-674. [26] 胡振, 傅昆, 张长水. 基于深度学习的作曲家分类问题[J]. 计算机研究与发展, 2014, 51(9):1945-1954. HU Zhen, FU Kun, ZHANG Changshui. Audio classical composer identification by deep neural network[J]. Journal of Computer Research and Development, 2014, 51(9):1945-1954. [27] HUMPHREY E J, CHO T, BELLO J P. Learning a robust Tonnetzspace transform for automatic chord recognition[C] // Proceedings of the 37th IEEE International Conference on Acoustics, Speech and SignalProcessing(ICASSP). Piscataway: IEEE, 2012: 453-456. [28] HINTON G, DENG L, YU D, et al. Deep neural networks foracoustic modeling in speech recognition: the shared views offour research groups[J]. Signal Processing Magazine, 2012, 29(6):82-97. [29] COVIELLO E, CHAN A B, LANCKRIET G. Time series models for semantic music annotation[J]. IEEE Transactions on Audio Speech & Language Processing, 2011, 19(5):1343-1359. [30] HOFFMAN M D, BLEI D M, COOK P R. Easy as CBA: a simple probabilistic model for tagging music[C] // International Society for Music Information Retrieval Conference.[S.l.] : DBLP, 2010: 369-374. [31] ECK D, LAMERE P, BERTIN-MAHIEUX T, et al. Automatic generation of social tags for music recommendation[C] // Conference on Neural Information Processing Systems.[S.l.] : DBLP, 2007: 385-392. |
[1] | GONG Shuang-shuang, CHEN Yu-feng, XU Jin-an, ZHANG Yu-jie. Extraction of Chinese multiword expressions based on Web text [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 40-48. |
[2] | YU Chuan-ming, ZUO Yu-heng, GUO Ya-jing, AN Lu. Dynamic discovery of authors research interest based on the combined topic evolutional model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 23-34. |
[3] | . Reader emotion classification with news and comments [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 35-39. |
[4] | . Design and implementation of topic detection in Russian news based on ontology [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 49-54. |
[5] | LIAO Xiang-wen, ZHANG Ling-ying, WEI Jing-jing, GUI Lin, CHENG Xue-qi, CHEN Guo-long. User influence analysis of social media with temporal characteristics [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 1-12. |
[6] | YU Chuan-ming, FENG Bo-lin, TIAN Xin, AN Lu. Deep representative learning based sentiment analysis in the cross-lingual environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 13-23. |
[7] | ZHANG Jun, LI Jing-fei, ZHANG Rui, RUAN Xing-mao, ZHANG Shuo. Community detection algorithm based on effective resistance of network [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 24-29. |
[8] | PANG Bo, LIU Yuan-chao. Fusion of pointwise and deep learning methods for passage ranking [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 30-35. |
[9] | CHEN Xin, XUE Yun, LU Xin, LI Wan-li, ZHAO Hong-ya, HU Xiao-hui. Text feature extraction method for sentiment analysis based on order-preserving submatrix and frequent sequential pattern mining [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 36-45. |
[10] | WANG Tong, MA Yan-zhou, YI Mian-zhu. Speech recognition of Russian short instructions based on DTW [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 29-36. |
[11] | ZHANG Xiao-dong, DONG Wei-guang, TANG Min-an, GUO Jun-feng, LIANG Jin-ping. gOMP reconstruction algorithm based on generalized Jaccard coefficient for compressed sensing [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 23-28. |
[12] | SUN Jian-dong, GU Xiu-sen, LI Yan, XU Wei-ran. Chinese entity relation extraction algorithms based on COAE2016 datasets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 7-12. |
[13] | WANG Kai, HONG Yu, QIU Ying-ying, WANG Jian, YAO Jian-min, ZHOU Guo-dong. Study on boundary detection of users query intents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 13-18. |
[14] | ZHANG Fan, LUO Cheng, LIU Yi-qun, ZHANG Min, MA Shao-ping. User preference prediction in heterogeneous search environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 26-34. |
[15] | YANG Yan, XU Bing, YANG Mu-yun, ZHAO Jing-jing. An emotional classification method based on joint deep learning model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 19-25. |
|