JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (3): 82-87.doi: 10.6040/j.issn.1671-9352.0.2017.501
Previous Articles Next Articles
YUAN Qing-xian1,2,3, GAO Li-lan1,2*, LI Rui-xin3*, LIU Ying-jie3, LIN Xiang-long1,2, ZHANG Xi-zheng3
CLC Number:
[1] LIU M, LIU N, ZANG R, et al. Engineering stem cell niches in bioreactors[J]. World Journal of Stem Cells, 2013, 5(4):124-135. [2] BOSE S, ROY M, BANDYOPADHYAY A. Recent advances in bone tissue engineering scaffolds[J]. Trends in Biotechnology, 2012, 30(10):546-554. [3] ZHANG X, REAGAN M R, KAPLAN D L. Electrospun silk biomaterial scaffolds for regenerative medicine[J]. Advanced Drug Delivery Reviews, 2009, 61(12):988-1006. [4] YIN L H, PENG P, MU X, et al. Preparation and characterization of three dimensional porous silk fibroin/gelatin composite scaffolds[J]. Journal of Functional Materials, 2013, 44(23):3388-3391. [5] FENG X X, ZHANG L L, CHEN J Y, et al. Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2.[J]. International Journal of Biological Macromolecules, 2007, 40(2):105-111. [6] KWANSA A L, DE V R, FREEMAN J W. Tensile mechanical properties of collagen type I and its enzymatic crosslinks[J]. Biophysical Chemistry, 2016, s 214/215:1-10. [7] 秦胜男. Ⅱ型胶原—透明质酸复合支架材料的构建及在软骨组织工程应用的初步研究[D]. 广州:暨南大学, 2010. QIN Shengnan. The construction of collagen type Ⅱ-hyaluronic acid composite biomaterial and preliminary application in the tissue-engineering cartilage[D]. Guangzhou: Jinan University, 2010. [8] CATROS S, GUILLEMOT F, NANDAKUMAR A, et al. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo.[J]. Tissue Engineering Part C Methods, 2012, 18(18):62-70. [9] 周惠琼, 吴东海, 李东民. 应用酶解及氯化钠盐析方法对4个种属Ⅱ型胶原的提纯及比较[J]. 中华医学杂志, 2001, 81(11):696-697. ZHOU Huiqiong, WU Donghai, LI Dongmin, et al. Purification and comparison of four species type II collagen by enzymolysis and sodium chloride salting out[J]. Chinese Medical Journal, 2001, 81(11):696-697. [10] KAPFER S C, HYDE S T, MECKE K, et al. Minimal surface scaffold designs for tissue engineering[J]. Biomaterials, 2011, 32(29):6875-6882. [11] YOO D J. Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces[J]. International Journal of Precision Engineering & Manufacturing, 2011, 12(1):61-71. [12] SUN W, LAL P. Recent development on computer aided tissue engineering-a review[J]. Computer Methods & Programs in Biomedicine, 2002, 67(2):85-103. [13] GAO L L, ZHANG C Q, DONG L M, et al. Description of depth-dependent nonlinear viscoelastic behavior for articular cartilage in unconfined compression[J]. Materials Science & Engineering C, 2012, 32(2):119-125. [14] OTTANI V, RASPANTI M, RUGGERI A. Collagen structure and functional implications[J]. Micron, 2001, 32(3):251-260. [15] DIAO H J, FUNG H S, YEUNG P, et al. Dynamic cyclic compression modulates the chondrogenic phenotype in human chondrocytes from late stage osteoarthritis[J]. Biochemical & Biophysical Research Communications, 2017, 486(1):14-21. [16] ZHOU F, ZHANG X, CAI D, et al. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair[J]. Acta Biomaterialia, 2017, 63(2):64-75. [17] 陈隆坤. 双层胶原/大孔径PLA纳米纤维支架用于关节骨软骨组织工程的研究[D].杭州:浙江大学,2011. CHEN Longkun. Fabrication of bilaver collagen/microporous nanofiber scaffolds and its application to articular osteochondral tissue engineering[D]. Hangzhou: Zhejiang University, 2011. [18] CASTRO-CESEÑA A B, CAMACHO-VILLEGAS T A, LUGO-FABRES P H, et al. Effect of starch on the mechanical and in vitro properties of collagen-hydroxyapatite sponges for applications in dentistry[J]. Carbohydr Polym, 2016, 148(1):78-85. [19] ZHU H, WU B, FENG X, et al. Preparation and characterization of bioactive mesoporous calcium silicate—silk fibroin composite films[J]. Sichuan Journal of Physiological Sciences, 2011, 98(2):330-341. [20] ZHU H, JIAN J, SHEN J. Biomacromolecules electrostatic self-assembly on 3-dimensional tissue engineering scaffold.[J]. Biomacromolecules, 2004, 5(5):1933-1939. [21] WHANG K, GOLDSTICK T K, HEALY K E. A biodegradable polymer scaffold for delivery of osteotropic factors[J]. Biomaterials, 2000, 21(24):2545-2551. |
[1] | LUAN Yi-chao, YANG Xiu-ping, ZHANG Jing-jing, LIU Qing, ZHANG Chun-qiu. Finite element simulation of relaxation properties on lumbarintervertebal disc under compression [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 77-81. |
[2] | YANG Xiu-ping, LUAN Yi-chao, ZHANG Jing-jing, LIU Qing, ZHANG Chun-qiu. Creep experiments study on lumbar intervertebral disc under different loading conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(5): 31-36. |
[3] | FU Hu, CHEN Ling, MEN Yu-tao, JIANG Yan-long. Experiment and finite element analysis of articular cartilage under rolling load [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(5): 37-40. |
[4] | ZHANG Jing-jing,YANG Xiu-ping,LIU Qing,ZHANG Chun-qiu*. Mechanics response analysis of lumbar intervertebral disc based on Biot theory [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 93-98. |
[5] | CHEN Ling, MEN Yu-tao, WANG Jia-jiang. Reliability analysis of dental implantation and split-root technique joint repaired postoperative dental [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(5): 6-10. |
[6] | WANG Jia-jiang, CHEN Ling, MEN Yu-tao, JI Chen. The feasibility study on shorten treatment cycle of dental implantation and split-root technique joint repair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 40-43. |
[7] | WANG Long-tao, YANG Xiu-ping, LIU Qing, YANG Wen-jing, FAN Zhen-min, ZHANG Chun-qiu. Solute transport in articular cartilage under rolling-compressing load [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(01): 81-84. |
[8] | JIANG Jun, YANG Xiu-ping, LIU Qing, ZHANG Chun-qiu. Simulating the solute diffusion in articular cartilage under compression loading [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(01): 85-89. |
|