JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (4): 77-84.doi: 10.6040/j.issn.1671-9352.0.2019.673

Previous Articles    

Cartan-Eilenberg Gorenstein AC-cohomology dimension of complexes

ZHANG Li-ying, YANG Gang   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2020-04-09

Abstract: Some equivalent characterizations of Cartan-Eilenberg Gorenstein AC-injective(projective)complexes are studied. It is proved that a complex G is Cartan-Eilenberg Gorenstein injective(projective)if and only if G has a Cartan-Eilenberg strongly complete injective(L complete projective)resolution. Also, the Cartan-Eilenberg Gorenstein AC-injective(projective)dimension of complexes is studied.

Key words: absolutely clean module(complex), Gorenstein AC-injective(projective)module, Cartan-Eilenberg Gorenstein AC-injective(projective)complex

CLC Number: 

  • O154.2
[1] VERDIER J L. Des catégories dérivées des catégories abéliennes[J]. Astérisque, 1996, 239:227-229.
[2] ENOCHS E E. Cartan-Eilenberg complexes and resolution[J]. J Algebra, 2011, 342(1):16-39.
[3] YANG Gang, LIANG Li. Cartan-Eilenberg Gorenstein projective complexes[J]. J Algebra Appl, 2014, 13(1):1350068.
[4] ZHAI Xiaorui, ZHANG Chunhua. Cartan-Eilenberg projective, injective and flat complexes[J]. Czech Math J, 2016, 66(1):151-167.
[5] BRAVO D, GILLESPIE J, HOVEY M. The stable module category of a general ring[J]. arXiv:1405.5768v1.
[6] BRAVO D, GILLESPIE J. Absolutely clean, level and Gorenstein AC-injective complexes[J]. Commun Algebra, 2014, 44(5):2213-2233.
[7] GILLESPIE J. Gorenstein AC-projective complexes[J]. J Homotopy Relat Str, 2018, 13(4):769-791.
[8] 赵仁育,权艳红. Gorenstein AC-投射复形的稳定性[J]. 西北师范大学学报(自然科学版), 2016, 52(1):1-7. ZHAO Renyu, QUAN Yanhong. Stability of Gorenstein AC-projection complex[J]. Journal of Northwest Normal University(Natural Science Edition), 2016, 52(1):1-7.
[1] GUO Shou-tao, WANG Zhan-ping. Gorenstein homological dimensions of modules under exact zero-divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 17-21.
[2] CHEN Wen-qian, ZHANG Xiao-jin, ZAN Li-bo. The number of tilting modules over Gorenstein algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 14-16.
[3] . FR-injective and FR-flat dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 1-6.
[4] LUO Xiao-qiang, XING Jian-min. Ding gr-injective and gr-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 87-91.
[5] WANG Xiao-qing, LIANG Li. Strongly cotorsion modules under faithfully flat co-base change [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 92-94.
[6] YANG Chun-hua. A note on the Gc-injective dimension of a complex [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 82-86.
[7] XU Hui, ZHAO Zhi-bing. Relative torsionless modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 75-80.
[8] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[9] SUN Wei-kun, LIN Han-xing. Representation dimension of one-point extension algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 85-91.
[10] CHENG Hai-xia, YIN Xiao-bin. Gorenstein injective objects in Abelian categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 79-84.
[11] XIE Zong-zhen, ZHANG Xiao-jin. On algebras with all τ-rigid modules projective [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 16-20.
[12] CHEN Xiu-li, CHEN Jian-long. Copure projective dimensions under Hopf extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 7-10.
[13] ZAN Li-bo, ZHANG Xiao-jin. Number of tilting modules over a class of Auslander algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 74-76.
[14] LUO Xiao-qiang, TAN Ling-ling, XING Jian-min. On homological properties of C-torsionless and C-reflexive modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 72-79.
[15] PAN Xiao-ling, LIANG Li. Tate homology of modules of finite Gorenstein flat dimension with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 102-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!